Electron Collision Processes in Nitrogen Trifluoride

  • C. Q. Jiao
  • C. A. DeJosephJr.
  • P. D. Haaland
  • A. Garscadden

Abstract

Nitrogen trifluoride is used extensively in several aspects of semiconductor processing and manufacture and was also employed as an atomic fluorine source in pulsed electrical-chemical lasers. The electron collision database is of interest for modeling and simulation of plasma enhanced etching of materials. We have recently made comprehensive measurements of the absolute dissociative ionization cross-sections of nitrogen trifluoride and also of its dissociative charge transfer from argon ions. These results are reviewed and compared with previous data in the literature. We also compile, where available, the results for electron attachment, momentum transfer, vibrational excitation, and dissociative excitation. This data set is compared with the results from swarm experiments for mixtures of NF3-argon and NF3-nitrogen. The needs and opportunities for additional experimental studies are outlined.

Keywords

Argon Amid Fluoride Fluorine Alan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J.A. Barkanic et al., Solid State Technol April (1989) 109.Google Scholar
  2. 2.
    G. Bruno, P. Capezzuto, G. Cicala, P. Manodoro, J. Vac. Sci. Technol, 12, (1994) 690.Google Scholar
  3. 3.
    K.E., Greenberg, J.T. Verdeyen, Appl. Phys., 57, (1985) 1696.Google Scholar
  4. 4.
    J. Perrin, J. Meot, J. Siefert, J. Schmitt, Plasma Chem. Plasma Process., 10, (1990) 571.CrossRefGoogle Scholar
  5. 5.
    P.J. Chantry, in Applied Atomic Collision Physics, H.S.W., Massey, E.W. McDaniel, B. Bederson, Eds.;Academic Press, New York, 1982, Vol. 3.Google Scholar
  6. 6.
    T.N. Rescigno, Phys. Rev. A, 52 (1995) 329.CrossRefGoogle Scholar
  7. 7.
    V.K. Lakdawala, J.L. Moruzzi, J. Phys. D: Appl. Phys., 13 (1980) 377.CrossRefGoogle Scholar
  8. 8.
    H. Baumgartel, H.W. Jochims, E. Ruhl, H. Bock, R. Dammel, J. Minkwitz, R. Nass, Inorg. Chem. 28, (1989), 943.CrossRefGoogle Scholar
  9. 9.
    S.A. Rogers, P.J. Miller, S.R. Leone, Chem. Phys. Lett., 166 (1990) 137.CrossRefGoogle Scholar
  10. 10.
    V. Tarnovsky, A. Levin, K. Becker, R. Basner, M. Schmidt, Int. J. Mass Spectrom. Ion Processes, 133 (1994)175.CrossRefGoogle Scholar
  11. 11.
    H. Deutsch, K. Becker, S. Matt, T.D. Mark, Int. J. Mass Spectrom., 197 (2000) 37.CrossRefGoogle Scholar
  12. 12.
    W.Huo (NASA Marshall Space Flight Center), personal communication. Also see:http://www.ipt.arc.nasa.gov/databasel.html, January, 2001.Google Scholar
  13. 13.
    R. Reese, V.H. Dibeler, J. Chem. Phys., 24 (1956), 1175.CrossRefGoogle Scholar
  14. 14.
    P.W. Harland, J.L. Franklin, J. Chem. Phys. 61 (1974) 1621.CrossRefGoogle Scholar
  15. 15.
    G.D. Sides, T.O. Tiernan, J. Chem. Phys. 67, (1977) 2382.CrossRefGoogle Scholar
  16. 16.
    P.J. Chantry, Westinghouse Technical Report, 1978, 78–926, ATACH-R1.Google Scholar
  17. 17.
    D.W. Trainor, J.H. Jacob, Appl. Phys. Lett. 35 (1979) 920.CrossRefGoogle Scholar
  18. 18.
    S. Ushiroda, S. Kajita, Y. Kondo, J. Phys. D. appl. Phys., 23 (1990) 47.CrossRefGoogle Scholar
  19. 19.
    N. Ruckhaberle, L. Lehmann, S. Matejcik, E. Illenberger, Y. Bouteiller, V. Periquet, L. Museur, C.Desfrancois, J.-P. Schermann, J. Phys. Chem. A 101 (1997) 9942.CrossRefGoogle Scholar
  20. 20.
    K.J. Nygaard, H.L. Brooks, S.R. Hunter, IEEEJ. Quantum Electron. QE15 (1979) 1216.CrossRefGoogle Scholar
  21. 21.
    K.G. Mothes, E. Schultes, R.N. Schindler, J. Phys. Chem., 76 (1972) 3758.CrossRefGoogle Scholar
  22. 22.
    M.J. Shaw, J.D.C. Jones, Appl. Phys. 14 (1977) 393.CrossRefGoogle Scholar
  23. 23.
    J.C.J. Thynne, J. Phys. Chem., 73 (1969) 1586.CrossRefGoogle Scholar
  24. 24.
    M.B. Roque, R.B. Siegel, K.E. Martus, V. Tarnovsky, K. Becker, J. Chem. Phys. 94 (1991) 341.CrossRefGoogle Scholar
  25. 25.
    L. Boesten, Y. Tachibana, Y. Nakano, T. Shinohara, H. Tanaka, M.A. Dillon, J. Phys. B: At. Mol. Opt. Phys., 29 (1996) 5475.CrossRefGoogle Scholar
  26. 26.
    N.A. Dyatko, A.P. Napartovich, J. Phys. D. Appl. Phys. 32 (1999), 3169.CrossRefGoogle Scholar
  27. 27.
    K.A. Blanks, K. Becker, J. Phys. B: At. Mol. Phys. 20 (1987) 6157.CrossRefGoogle Scholar
  28. 28.
    K.A. Blanks, A.E. Tabor, K. Becker, J. Chem. Phys., 86 (1987) 4871.CrossRefGoogle Scholar
  29. 29.
    Z.J. Jabbour, K.A. Blanks, K.E. Martus, K. Becker, J. Chem. Phys. 88 (1988) 4252.CrossRefGoogle Scholar
  30. 30.
    K.A. Blanks, A.E. Tabor, K. Becker, Int. Conf. On Physics of Electronic and Atomic Collisions (Brighton), 1989, p 347.Google Scholar
  31. 31.
    M.B. Roque, R.B. Siegel, K.E. Martus, V. Tarnovsky, K. Becker, J. Chem. Phys. 94 (1991) 341.CrossRefGoogle Scholar
  32. 32.
    K. Riehl, Collisional Detachment of Negative Ions Using FTMS, Ph.D. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, 1992.Google Scholar
  33. 33.
    P.D. Haaland, Chem. Phys. Lett., 170 (1990) 146.CrossRefGoogle Scholar
  34. 34.
    A. G. Marshall, T. L. Wang, T. L. Ricca, J. Am. Chem. Soc. 107 (1985) 7893.CrossRefGoogle Scholar
  35. 35.
    S. Guan, J. Chem. Phys. 91 (1989) 775.CrossRefGoogle Scholar
  36. 36.
    Z. Liang, A. G. Marshall, Anal. Chem. 62 (1990), 70.CrossRefGoogle Scholar
  37. 37.
    P. Haaland, J. Chem. Phys. 93 (1990), 4066.CrossRefGoogle Scholar
  38. 38.
    R. C. Wetzel, F. A. Baioochi, T. R. Hayes, R. S. Freund, Phys. Rev. 35 (1987) 559.CrossRefGoogle Scholar
  39. 39.
    H.M. Rosenstock, K. Draxl, B.W. Stiner, J.T. Herron, Energetics of Gaseous Ions Journal of Physical and Chemical Reference Data, 1977, vol. 6.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • C. Q. Jiao
    • 1
  • C. A. DeJosephJr.
    • 2
  • P. D. Haaland
    • 3
  • A. Garscadden
    • 2
  1. 1.Innovative Scientific Solutions, IncorporatedDaytonUSA
  2. 2.Wright-Patterson AFBAir Force Research LaboratoryFairbornUSA
  3. 3.Mobium Enterprises, Inc.DaytonUSA

Personalised recommendations