Chemisorbed CF3I on a Silicon Surface

  • Jason E. Sanabia
  • John H. Moore


In plasma etching of silicon substrates, electron-impact on a halogen-containing feed gas creates chemically-active ions and radicals that react with silicon to form volatile SiXy (X = halogen) species. Unfortunately, the most widely-used feed gas, CF4, has a high global warming potential.1 As a consequence, other halocarbons are being considered as replacements for CF4. Trifluoroiodomethane, CF3I, is a promising candidate: It has a low global-warming potential2 and plasma-etching of silicon dioxide with CF3I has recently been demonstrated3-5.


Silicon Surface Plasma Etching Uptake Measurement Sticking Probability Dissociative Chemisorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Climate Change 1995: The Science of Climate Change, edited by J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (Cambridge University Press, Cambridge, 1996).Google Scholar
  2. 2.
    S. Solomon, J. B. Burkholder, A. R. Ravishankara, and R. R. Garcia, Ozone depletion and global warming potentials of CF,I, J. Geophys. Res. [Atmos.] 99(D10) 20929–20935 (1994).CrossRefGoogle Scholar
  3. 3.
    S. Samukawa, T. Mukai, and K. Tsuda, New radical control method for high-performance dielectric etching with nonperfluoro compound gas chemistries in ultrahigh-frequency plasma, J. Vac. Sci. Technol. A 17(5), 2551–2556(1999).CrossRefGoogle Scholar
  4. 4.
    S. Karecki, L. Pruette, and R. Reif, Use of novel hydrofluorocarbon and iodofluorocarbon chemistries for a high aspect ratio etch in a high density plasma, J. Electrochem. Soc. 145(12), 4305–4312 (1998).CrossRefGoogle Scholar
  5. 5.
    A. Misra, J. Sees, L. Hall, R. A. Levy, V. B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, S. Kesari, and D. Rufin, Plasma etching of dielectric films using the non-global-warming gas CF3I, Mater. Lett. 34, 415–419(1998).CrossRefGoogle Scholar
  6. 6.
    E. Illenberger, in: Linking the Gaseous and Condensed Phases of Matter - The Behavior of Slow Electrons, edited by L. G. Christophorou, E. Illenberger, and W. F. Schmidt (Plenum Press, New York, 1994).Google Scholar
  7. 7.
    J. E. Fieberg, A. Szabo, and J. M. White, Electron-stimulated chemistry of CF3I adsorbed on Ag(l11): C-F bond cleavage and C-C coupling, J. Chem. Soc, Faraday Trans. 92(23), 4739–4748 (1996).CrossRefGoogle Scholar
  8. 8.
    M. B. Jensen and P. A. Thiel, Thermally-induced and electron-induced chemistry of CF3I on Ni(l00), J. Am. Chem. Soc. 117(1), 438–445 (1995).CrossRefGoogle Scholar
  9. 9.
    G. D. Cooper, J. E. Sanabia, J. Orloff, and J. H. Moore, Electron-stimulated desorption from the products ofchemisorption of trifluorochloroethene on silicon, Int. J. Mass Spec, (in press).Google Scholar
  10. 10.
    J. L. Lin and J. T. Yates, Thermal-reactions of fluorocarbon and hydrofluorocarbon species on Si(l00)-(2x1) - CF3I, CF3CH2I, and C2F4,J. Vac. Sci. Technol. A 13(2), 178–182 (1995).CrossRefGoogle Scholar
  11. 11.
    J. T. Yates, Experimental Innovations in Surface Science (Springer Verlag, 1997).CrossRefGoogle Scholar
  12. 12.
    H. F. Winters, The role of chemisorption in plasma etching, J. Appl. Phys. 49(10), 5165–5170 (1978).CrossRefGoogle Scholar
  13. 13.
    A. Szabo, S. E. Converse, S. R. Whaley, and J. M. White, Thermal chemistry of CF3I on Ag(l11): a TPD and RAIRS Study, Surf Sci. 364(3), 345–366 (1996).CrossRefGoogle Scholar
  14. 14.
    M. B. Jensen, J. S. Dyer, W. Y. Leung, and P. A. Thiel, An electron-stimulated desorption ion angular distribution and low-energy electron diffraction investigation of CF3I on Ru(00l), Langmuir 12(14), 3472–3480(1996).CrossRefGoogle Scholar
  15. 15.
    M. B. Jensen, U. Myler, C. J. Jenks, P. A. Thiel, E. D. Pylant, and J. M. White, Reactivity and structure of CF3I on Ru(00l), J. Phys. Chem. 99(21), 8736–8744 (1995).CrossRefGoogle Scholar
  16. 16.
    K. B. Myli and V. H. Grassian, Reaction of trifluoromethyl iodide on Ni(l00), J. Phys. Chem. 99(5), 1498–1504(1995).CrossRefGoogle Scholar
  17. 17.
    K. B. Myli and V. H. Grassian, Adsorption and reaction of trifluoromethyl iodide on Ni(lll), J. Phys. Chem. 99(15);5581–5587(1995).CrossRefGoogle Scholar
  18. 18.
    H. Lüth,Surfaces and Interfaces of Solids (Springer- Verlag, Berlin, 1993).Google Scholar
  19. 19.
    S. Joyce, J. G. Langan, and J. I. Steinfeld, Chemisorption of fluorocarbon free-radicals on silicon and Si02, J. Chem. Phys. 88(3), 2027–2032 (1988).CrossRefGoogle Scholar
  20. 20.
    M. J. Bozack, M. J. Dresser, W. J. Choyke, P. A. Taylor, and J. T. Yates, Jr., Si-F bond directions on Si(l00) - A study by ESDIAD, Surf. Sci. 184, L332–L338 (1987).CrossRefGoogle Scholar
  21. 21.
    D. Menzel and R. Gomer, Desorption from metal surfaces by low-energy electrons, J. Chem. Phys. 41(11), 3311(1964).CrossRefGoogle Scholar
  22. 22.
    P. A. Redhead, Interaction of slow electrons with chemisorbed oxygen, Can. J. Phys. 42, 886 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jason E. Sanabia
    • 1
  • John H. Moore
    • 2
  1. 1.Chemical Physics ProgramUniversity of MarylandCollege ParkUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations