Advertisement

Deposition of Plasma Polymer Films by an Atmospheric Pressure Glow Discharge

  • Rüdiger Foest
  • Florian Sigeneger
  • Martin Schmidt

Abstract

Plasma assisted chemical vapor deposition is a proven method for the formation of thin films. The application of non-thermal low pressure plasmas containing organic compounds for thin film deposition by plasma polymerization is well known1. These films are successfully applied for corrosion protection and as diffusion barriers2. Operating non thermal discharges under atmospheric pressure conditions requires no vacuum devices, therefore the integration of the plasma process into production lines is greatly simplified. Batch processing can be avoided thus reducing production costs significantly. The plasma of the atmospheric pressure dielectric barrier discharge (DBD) has been used for technical applications for many years starting with ozone generation (Siemens, 1852). Other fields of application are flue gas cleaning, surface treatment of polymeric foils and films and thin film deposition3. The dielectric barrier discharge is usually a filamentary one and therefore strongly inhomogeneous. A homogeneous DBD without filaments was described by Okazaki et al. in a planar electrode configuration in He, later also in other gases and gas mixtures4. According to some similarities with the dc glow discharge this discharge is called atmospheric pressure glow discharge5. Its homogeneity favours this discharge for thin film deposition techniques.

Keywords

Glow Discharge Dielectric Barrier Discharge Ionization Cross Section Plasma Polymerization Thin Film Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Yasuda, Plasma Polymerization (Academic Press, Orlando 1985)CrossRefGoogle Scholar
  2. 2.
    H. Grünwald, R. Adam, J. Bartella, M. Jung, W. Dicken, S. Kunkel, K. Nauenburg, T. Gebele, and S. Mitzlaff, Better Aluminium Mirrors by Integrating Plasma Pretreatment, Sputtering, and Plasma Polymerization for Large-scale Car Headlight Production, Surf. Coat. Techn. 111(2), 287–296 (1999)CrossRefGoogle Scholar
  3. 3.
    U. Kogelschatz, B. Eliasson, and W. Egli, Dielectric-Barrier Discharges Principle and Applications in 23rd. Int. Conf. on Phenomena in Ionized Gases, Inv. Papers, ed. M. C. Bordage, A. Gleizes, J. Phys. IV France 7,C447–C466(1997)CrossRefGoogle Scholar
  4. 4.
    M. Kogoma and S. Okazaki, Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure, J. Phys. D.: Appl. Phys. 27(9), 1985–1987 (1994)CrossRefGoogle Scholar
  5. 5.
    F. Massines, A. Rabehi, P. Decomps, R.B. Gadri, P. Segur, and C. Mayoux, Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by dielectric Barrier, J. Appl. Phys. 83(6), 2950–2957(1998)CrossRefGoogle Scholar
  6. 6.
    J. Schwarz, M. Schmidt, A. Ohl, Synthesis of Plasma-Polymerized Hexamethyldisiloxane (HMDSO) Films by Microwave Discharge, Surf. Coat. Techn. 98, 859–864 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Roth and M. Neiger, Bestimmung von Kathodenfallspannungen durch Messung innerer elektrischer Größen von dielektrischen Barriereentladungen, 10. Deutsche Tagung Plasmatechnologie, Greifswald, 2001 (Poster)Google Scholar
  8. 8.
    R. Winkler, in: Low Temperature Plasma Physics, edited by R. Hippler, S. Pfau, M. Schmidt, and K.H. Schoenbach, (WILEY-VCH, Berlin, 2001), pp. 29–54Google Scholar
  9. 9.
    M. Dilonardo, M. Capitelli, C. Gorse, J. Wilhelm, and R. Winkler, The Impact of Different CO Admixtures on the Electron Kinetics in Collision Dominated RF He/CO Bulk Plasmas Contr. Plasma Phys. 28(6), 543–555(1988)CrossRefGoogle Scholar
  10. 10.
    R. Basner, R. Foest, M. Schmidt, K. Becker, and H. Deutsch, Absolute Total and Partial Electron Impact Ionization Cross Sections of Hexamethyldisiloxane, Int. J. Mass Spectrom. Ion Processes 176, 245–252 (1998)Google Scholar
  11. 11.
    Hayashi, Handbook of Plasma Material Science (Ohm Co. Japanese, 1992)Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Rüdiger Foest
  • Florian Sigeneger
  • Martin Schmidt
    • 1
  1. 1.Institut für Niedertemperatur-PlasmaphysikGreifswaldGermany

Personalised recommendations