Skip to main content

The use of SF6 as a Plasma Processing Gas

  • Chapter
Gaseous Dielectrics IX

Abstract

Power electronics and high temperature operation capable micro electro mechanical (MEM) device fabrication, using wide bandgap semiconductors, require development of plasma processing tools where both ion energy and radical fluxes can be controlled to obtain reasonable etch rates with minimal surface damage. Recent work indicates that reactive ion etching (RIE) process optimization can be achieved primarily through a consideration of plasma electrical properties [1,2], which may lead to improved material removal performance. The concept involves modifying the electronegative character of strongly attaching etchant gas discharges through dilution with an electropositive gas species such as Ar, N2, or even a weakly electronegative gas such as O2. This gas mixture changes the radio frequency (RF) current-voltage (I-V) phase shift from a capacitive maximum of -90° to a value in the range of -45°, corresponding to the transition from sheath to bulk dominated discharge regimes. The changes in I-V phase shifts increase power deposition efficiency in the plasma, which leads to a greater production of the ions and radicals required for material removal. The optimal discharge condition is a function of pressure, fractional dilution, and electronegativity of the total gas mixture. Several authors have demonstrated various aspects of this phenomenon [3-6]. However, Sobolowski, Langan, and Felker [1], and Langan et. al.[2] have conclusively correlated RF electrical measurements with optical emission data and dielectric (SiN, SiO2) etch rates for NF3, CF4, and C2F6 diluted with Ar, He, O2, N2, and N2O. Based upon their observations, and simple models of the bulk and sheath regions of a parallel plate RF discharge, they proposed this RIE discharge optimization scheme to be generic in nature and applicable to any RF discharge utilizing electronegative gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. M.A. Sobolewski, J.G. Langan, and B.S. Felker, J. Vac. Sci. and Technol. B 16,173 (1998).

    Google Scholar 

  2. J.G. Langan, S.E. Beck, B.S. Felker, and S.W. Rynders, J. Appl. Phys. 79, 3886 (1996).

    Article  Google Scholar 

  3. F. Bose, R. Patrick, and H.P. Bakes, J. Vac. Sci. and Technol. B 12, 2805 (1994).

    Article  Google Scholar 

  4. P. Bletzinger, J. Appl. Phys. 67, 130 (1990).

    Article  Google Scholar 

  5. B. Andries, G.Ravel, and L.Peccoud, J. Vac. Sci. Technol. A 7 (4), 2774 (1988).

    Article  Google Scholar 

  6. J.W.Butterbaugh, L.D.Baston, and H.H.Sawin, J. Vac. Sci. Technol. A 8 (2), 916 (1990).

    Article  Google Scholar 

  7. J.D.Scofield, P.B.Bletzinger, and B.N.Ganguly, Appl. Phys. Lett. 73, 76 (1998).

    Article  Google Scholar 

  8. J.D.Scofield, B.N.Ganguly, P.B.Bletzinger, J. Vac. Sci. Technol. A18, 2175 (2000).

    Article  Google Scholar 

  9. M. E. Barone and D. B. Graves, J. appl. Phys. 78, 6604 (1995)

    Article  Google Scholar 

  10. C. F. Abrams and D. B. Graves, J. Vac. Sci. Technol A19,175 (2001) and other references there in.

    Article  Google Scholar 

  11. H.F. Winters and J.W. Coburn, Surf. Sci. Rep. 14,164 (1992).

    Article  Google Scholar 

  12. J.W. Butterbaugh, D.C. Gray, and H.H. Sawin, J. Vac. Sci. Technol B9,1461(1991).

    Article  Google Scholar 

  13. G.S. Oehrlein and H.R. Williams, J. Appl. Phys. 62, 662 (1987).

    Article  Google Scholar 

  14. G.S. Oehrlein, Y. Zhang, D. Vendor, and O. Joubert, J. Vac. Sci. Technol A12, 333 (1994)

    Article  Google Scholar 

  15. J.P. Booth, G. Cunge, P. Chabert, and N. Sadeghi, J. Appl. Phys. 85, 3097 (1999).

    Article  Google Scholar 

  16. J.P. Booth and G. Cunge, J. Appl. Phys. 85 (8), 3097 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ganguly, B.N., Scofield, J.D., Bletzinger, P. (2001). The use of SF6 as a Plasma Processing Gas. In: Christophorou, L.G., Olthoff, J.K. (eds) Gaseous Dielectrics IX. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0583-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0583-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5143-6

  • Online ISBN: 978-1-4615-0583-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics