Skip to main content

Recent Advances in the Development of Cell Culture Models for the Blood-Brain- and Blood-CSF-Barrier

  • Chapter
Blood—Brain Barrier

Abstract

Two cellular barriers effectively protect the mammalian brain from passive entrance of ions and hydrophilic compounds circulating in the bloodstream. First, the vascular capillaries of the brain are almost entirely lined by unique endothelial cells that build up the blood-brain barrier (BBB). In those very limited regions of the brain, where the endothelial cells do not provide a sufficiently tight barrier — namely in certain parts of the ventricular system, the choroid plexus — an underlying sheet of epithelial cells serves to separate blood from cerebrospinal fluid and thereby forms the blood-cerebrospinal fluid barrier (BCFB). The ability of both cell types to separate two compartments of different chemical composition arises from the formation of very tight intercellular junctions (tight junctions). These cell-cell contacts prevent diffusive permeation of blood derived compounds along the intercellular cleft between adjacent cells into the CNS or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brindley, D.N. and Waggoner, D.W., 1998, Mammalian lipid phosphohydrolases. J. Biol. Chem. 273: 1–4.

    Article  Google Scholar 

  • Chang, C., Wang, X., Caldwell, R.B., 1997, Serum opens tight junctions and reduces ZO-1 protein in retinal epithelial cells. J. Neurochem. 69: 859–867.

    Article  PubMed  CAS  Google Scholar 

  • Crook, R.B., Kasagami, H., Prusinger, S.B., 1981, Culture and characterisation of epithelial cell from bovine choroid plexus. J.Neurochem 37: 845–854.

    Article  PubMed  CAS  Google Scholar 

  • El-Shabrawi, Y., Eckhardt, M., Berghold, A., Faulborn, J., Auboeck, L., Mangge, H. and Ardjomand, N., 2000, Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human expiant organ cultures after treatment with latanoprost and dexamethasone. Eye 3a: 375–383.

    Article  Google Scholar 

  • English, D., Kovala, A.T., Welch, Z., Harvey, K.A., Siddiqui, R.A., Brindley, D.N. and Garcia J.G.N., 1999, Induction of Endothelial Cell Chemotaxis by Sphingosine 1-Phosphate and Stabilization of Endothelial Monolayer Barrier Function by Lysophosphatidic Acid, Potential Mediators of Hematopoietic Angiogenesis. J. Hematother. Stem Cell Res. 8: 627–634.

    Article  PubMed  CAS  Google Scholar 

  • English, D., Cui, Y., Siddiqui, R., Patterson, C., Natarajan, V., Brindley D.N. and Garcia, J.G.N., 1999, Induction of endothelial monolayer permeability by phosphatidate. J. Cell. Biochem. 75: 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Forth, W., Henschler, D. and Rummel, W., 1987, Allgemeine und spezielle Pharmakologie und Toxikologie. B.I. Wissenschaftsverlag, Mannheim/Wien/Zürich.

    Google Scholar 

  • Gaits, F., Fourcade, O., Le Balle, F., Gueguen, G., Gaige, B., Gassama-Diagne, A., Fauch, J., Salles, J.B., Mauco, G., Simon, M.F. and Chap, H., 1997, Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett. 410: 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Gath, U., Hakvoort, A., Wegener, J., Decker, S., Galla, H.J., 1997, Porcine choroid plexus cells in culture: expression of polarised phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur. J. Cell Biol. 74: 68–78.

    PubMed  CAS  Google Scholar 

  • Goetzl, E.J., Lee, H., Toshifumi, A., Stossel, T.P., Turck, C.W. and Karliner, J.S., 2000, Gelsolin Binding and Cellular Presentation of Lysophosphatidic Acid. J. Biol. Chem. 19: 14573–14578.

    Article  Google Scholar 

  • Hakvoort, A., Haselbach, M., Wegener, J., Hoheisel, D., Galla, H.J., 1998, The polarity of choroid plexus epithelial cells in vitro is improved in serum-free medium. J. Neurochem. 71: 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  • Haselbach, M., Wegener, J., Decker, S., Engelbertz, C, Galla, H.J., 2001, Choroid plexus epithelial cells in culture: Regulation of barrier properties and transport processes. Micr. Res. Tech., in press.

    Google Scholar 

  • Hoheisel, D., Nitz, T., Franke, H., Wegener, J. and Galla, H.-J., 1998, Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem. Biophys. Res. Commun. 244: 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Korte, D., 2000, PHD-Thesis Universität Münster, Germany.

    Google Scholar 

  • Kroll, J. and Waltenberger, J., 2000, Regulation of endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A). Z. Kardiol. 89: 206–218.

    Article  PubMed  CAS  Google Scholar 

  • Meßmer, U.K., Winkel, G., Briner, V.A. and Pfeilschifter, J., 2000, Suppression of apoptosis by glucocorticoids in glomerular endothelial cells: effects on proapoptotic pathways. Br. J. Pharmacol. 129: 1673–1683.

    Article  PubMed  Google Scholar 

  • Neufeld, G., Cohen, T., Gengrinovitch, S. and Poltorak, Z., 1999, Vascular endothelial growth factor (VEGF) and its receptor. FASEB J. 13: 9–22.

    PubMed  CAS  Google Scholar 

  • Panetti, T.S., Chen, H., Misenheimer, T.M., Getzler, S.B. and Mosher D.F., 1997, Endothelial cell mitogenesis induced by LPA: inhibition by thrombospondin-1 and thrombospondin-2. J. Lab. Clin. Med. 129: 208–216.

    Article  PubMed  CAS  Google Scholar 

  • Parmelee, J.T., Johanson, C.E., 1989, Development of potassium transport capability by choroid plexus of infant rats. Am. J. Physiol. 256: R786–R791.

    PubMed  CAS  Google Scholar 

  • Ramanthan, V.K., Chung, S.J., Giacomini, K.M., Brett, CM., 1997, Taurine transport in cultured choroid plexus. Pharma Res 14: 406–409.

    Article  Google Scholar 

  • Risau, W., 1997, Mechanisms of angiogenesis. Nature 386: 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, C., Smales, C., Rubin, L.L. and Staddon, M.J., 1997, Lysophosphatidic Acid Increases Tight Junction Permeability in Cultured Brain Endothelial Cells. J. Neurochem. 68: 991–1000.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, C., 1992, The development of cellular polarity in transport epithelial. Sem Perinatol 16: 78–89.

    CAS  Google Scholar 

  • Singer, K.L., Stevenson, B.R., Woo, P.L. and Firestone, G.L., 1994, Relationship of Serine/Threonine Phosphorylation/Dephosphorylation Signaling to Glucocorticoid Regulation of Tight Junction Permeability and ZO-1-Distribution in Nontransformen Mammary Epithelial Cells. J. Biol. Chem. 269: 16108–16115.

    PubMed  CAS  Google Scholar 

  • Southwell, B.R., Duan, W., Alcorn, D., Brack, C., Richardson, S.J., Köhrle, J., Schreiber, G., 1993, Thyroxine transport to the brain: role of protein synthesis by the choroid plexus. Endocrinology 133: 2116–2126.

    Article  PubMed  CAS  Google Scholar 

  • Tewes, B., Franke, H., Hellwig, S., Hoheisel, D., Decker, S., Griesche, D., Tilling, T., Wegener, J. and Galla, H.-J., 1997, Preparation of endothelial cells in primary cultures obtained from the brains of 6-month-old pigs. In Transport Across the Blood-Brain Barrier: In Vitro and In Vivo Techniques (A.G. de Boer and W. Sutanto, eds.), Academic Publishers, Amsterdam: Harwood, pp. 91–97.

    Google Scholar 

  • Tokumura, A., Iimori, M., Nishioka, Y., Kitahara, M., Sakashita, M. and Tanaka, S., 1994, Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am. J. Physiol. 267: C204–C210.

    PubMed  CAS  Google Scholar 

  • Van Meer, G., Simons, K., 1986, The function of tight junction in maintaining differences in lipid composition between the apical and basolateral cell surface domains of MDCK cell. EMBO J. 5, 1455–1464.

    PubMed  Google Scholar 

  • Wegener, J. and Galla, H.-J., 1996, The role of non-lamellar lipid structures in the formation of tight junctions. Chem. Phys. Lipids 81: 229–255.

    Article  CAS  Google Scholar 

  • Zeuthen, T., Wright, E.M., 1981, Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J. Membr. Biol. 60: 105–128.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nitz, T., Eisenblätter, T., Haselbach, M., Galla, HJ. (2001). Recent Advances in the Development of Cell Culture Models for the Blood-Brain- and Blood-CSF-Barrier. In: Kobiler, D., Lustig, S., Shapira, S. (eds) Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0579-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0579-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5141-2

  • Online ISBN: 978-1-4615-0579-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics