Skip to main content

Pathophysiology of the Blood-Spinal Cord Barrier in Spinal Cord Injury

Influence of a new antioxidant compound H-290/51

  • Chapter

Abstract

Blood-spinal cord barrier (BSCB) strictly maintains the fluid microenvironment of the spinal cord within a narrow limit4,6. Alteration of the BSCB in several diseases inflicting the cord is usually associated with marked neuronal, glial and myelin cell damage21. However, the functional significance of the BSCB breakdown in inducing cell changes in the cord is still speculative. Thus, it is still not certain whether cellular changes seen in several diseases in the cord are the cause or effect of BSCB dysfunction. There are reasons to believe that breakdown of the BSCB plays important role in the cell injury caused by several noxious insults to the cord18,20. This is evident from the fact that in healthy spinal cord the BSCB is very tight to several tracers such as colloidal lanthanum (molecular diameter, MD less than 20 Å); microperoxidase (MD 20 Å), horseradish peroxidase (MD 50 Å) and ferritin (MD 100 Å)2,4,6,9,20. Previous studies from our laboratory using hydrated lanthanum (MD 9.2 Å) show that the passage of the tracer is severely restricted at the tight junctions of the spinal cord endothelial cells8,16. Furthermore, presence of lanthanum in vesicular profiles or within the endothelial cell cytoplasm is mainly absent16. This indicates that the permeability properties of the BSCB are quite similar to that of the blood-brain barrier (BBB).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calbrese V, Bates T E, Giuffrida Stella A M (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: The role of oxidant/antioxidant balance. Neurochem Res 25: 1315–1341.

    Article  Google Scholar 

  2. Cervós-Navarro J, Ferszt R (1980) Brain Edema: Pathology, Diagnosis and Therapy, Adv Neurol 28: 1–450.

    Google Scholar 

  3. Faden A I, Salzman S (1992) Pharmacological strategies in CNS trauma. TiPS 13: 29–35.

    PubMed  CAS  Google Scholar 

  4. Griffiths I R, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord impact injuries. J Neurol Sci 58: 335–349.

    Article  Google Scholar 

  5. Hedlund S, Sharma H S, Sjöquist P-O, Westman J (1999) A new antioxidant compound H-290/51 attenuates heat shock protein (HSP 72 kD) response, edema and cell injury following acute heat exposure, an experimental study using light and electron microscopy in the rat. J Therm Biol 24: 409–414.

    Article  CAS  Google Scholar 

  6. Hsu C Y, Hogan E L, Gadsen R H, Spicer K M, Shi M P, Cox RD (1985) Vascular permeability in experimental spinal cord injury. J Neurol Sci 70: 275–282.

    Article  PubMed  CAS  Google Scholar 

  7. Mustafa A, Sharma H S, Olsson Y, Gordh T, Thóren P, Sjöquist P-O, Ross P, Adem A, Nyberg F (1995) Vascular permeability to growth hormone in the rat central nervous system after focal spinal cord injury. Influence of a new antioxidant compound H-290/51 and age. Neurosci Res 23: 185–194.

    Article  PubMed  CAS  Google Scholar 

  8. Olsson Y, Sharma H S, Pettersson CA V (1990) Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using 131I-sodium and lanthanum tracers. Acta Neuropathol (Berlin) 79: 595–603.

    Article  PubMed  CAS  Google Scholar 

  9. Rapoport S I (1966) Blood-Brain Barrier in Physiology and Medicine, Raven Press, New York, pp. 1–272.

    Google Scholar 

  10. Sharma H S (1987) Effect of Captopril (a converting enzyme inhibitor) on blood-brain barrier permeability and cerebral blood flow in normotensive rats. Neuropharmacology 26: 85–92.

    Article  PubMed  CAS  Google Scholar 

  11. Sharma H S, Olsson Y (1990) Edema formation and cellular alterations following spinal cord injury in rat and their modification with p-chlorophenylalanine. Acta Neuropathol (Berlin) 79: 604–610.

    Article  CAS  Google Scholar 

  12. Sharma H S, Olsson Y, Dey PK (1990) Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes. Neuroscience 36: 725–730.

    Article  PubMed  CAS  Google Scholar 

  13. Sharma H S, Olsson Y, Nyberg F, Dey PK (1993) Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury. An experimental study in the rat. Neuroscience 57: 443–449.

    Article  PubMed  CAS  Google Scholar 

  14. Sharma H S, Olsson Y, Cervós-Navarro J (1993) p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. Acta Neuropathol (Berlin) 86: 422–427.

    Article  CAS  Google Scholar 

  15. Sharma H S, Olsson Y, Nyberg F (1995) Influence of dynorphin-A antibodies on the formation of edema and cell changes in spinal cord trauma. Progr Brain Res 104: 401–416.

    Article  CAS  Google Scholar 

  16. Sharma H S, Olsson Y, Pearsson S, Nyberg F (1995) Trauma induced opening of the blood-spinal cord barrier is reduced by indomethacin, an inhibitor of Prostaglandin synthesis. Experimental observations in the rat using 131I-sodium, Evans blue and lanthanum as tracers. Restor Neurol Neurosci 7: 207–215.

    PubMed  Google Scholar 

  17. Sharma H S, Westman J, Nyberg F (1998) Pathophysiology of brain edema and cell changes following hyperthermic brain injury. Progr Brain Res 115: 351–412.

    Article  CAS  Google Scholar 

  18. Sharma H S (1999) Pathophysiology of blood-brain barrier, brain edema and cell injury following hyperthermia: New role of heat shock protein, nitric oxide and carbon monoxide, an experimental study in the rat using light and electron microscopy, Acta Universitatis Upsaliensis 830: 1–94.

    Google Scholar 

  19. Sharma H S, Alm P, Sjöquist P-O, Westman J (2001) A new antioxidant compound H-290/51 attenuates upregulation of constitutive isoform of heme oxygenase (HO-2) following trauma to the rat spinal cord. Acta Neurochir (Wien) Suppl. 76 (in press).

    Google Scholar 

  20. Stålberg E, Sharma H S, Olsson Y (1998) Spinal Cord Monitoring. Basic Principles, Regeneration, Pathophysiology and Clinical Aspects, Springer-Verlag, Wien, New York, pp. 1–526.

    Book  Google Scholar 

  21. Tator C H, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26.

    Article  PubMed  CAS  Google Scholar 

  22. Thörnwall M, Sharma H S, Gordh T, Sjöquist P-O, Nyberg F (1997) Substance P endopeptidase activity in the rat spinal cord following injury. Influence of a new antioxidant compound H 290/51. Acta Neurochir, Suppl 70, 212–215.

    Google Scholar 

  23. Tong L, Toliver-Kinsky T, Taglialatela G, Werrbach-Perez K, Wood T, Perez-Polo R (1998) Signal transduction in neuronal death. J Neurochem 71: 447–459.

    Article  PubMed  CAS  Google Scholar 

  24. Wagner J F C, Stewart WB (1984) Effect of trauma dose on spinal cord edema. J Neurosurg 54: 802–806.

    Google Scholar 

  25. Winkler T, Sharma H S, Stålberg E, Westman J (1997) Benzodiazepine receptors influence spinal cord evoked potentials and edema following trauma to the rat spinal cord. Acta Neurochir, Suppl 70: 216–219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, H.S., Ove-Sjöquist, P., Westman, J. (2001). Pathophysiology of the Blood-Spinal Cord Barrier in Spinal Cord Injury. In: Kobiler, D., Lustig, S., Shapira, S. (eds) Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0579-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0579-2_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5141-2

  • Online ISBN: 978-1-4615-0579-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics