Skip to main content

Intranasal Delivery of Bioactive Peptides or Peptide Analogues Enhances Spatial Memory and Protects Against Cholinergic Deficits

  • Chapter
  • 393 Accesses

Abstract

Studies utilizing the 28 amino acid vasoactive intestinal peptide (VIP), or glial-derived VIP-associated proteins as templates for future drug design originated from two lines of experimental results: 1] The findings of increased expression of the VIP gene (Bodner et al.,1985) during synapse formation (Gozes et al., 1987) and its decreased synthesis with aging (Gozes et al.,1988). 2] The findings of neuroprotective activities for VIP against electrical blockade (Brenneman and Eiden, 1986) that are mediated by glial cells (Brenneman et al.,1987; Brenneman et al.,1990) expressing high affinity VIP receptors (Gozes et al.,1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashur-Fabian, O., Perl, O., Lilling, G., Fridkin, M., and Gozes, I. 1999, SNV, a lipophilic superactive VIP analog, acts through cGMP to promote neuronal survival. Peptides 20: 629–633.

    Article  PubMed  CAS  Google Scholar 

  • Bodner, M., Fridkin, M., and Gozes, I. 1985 Coding sequences for vasoactive intestinal peptide and PHM-27 peptide are located on two adjacent exons in the human genome. Proc. Natl. Acad. Sci. U S A 82: 3548–3551.

    Article  PubMed  CAS  Google Scholar 

  • Bassan, M., Zamostiano, R., Davidson, A., Pinhasov, A., Giladi, E., Perl, O., Bassan, H., Blat, C., Gibney, G., Glazner, G., Brenneman, D.E., and Gozes, I. 1999, Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72: 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D.E., and Eiden, L.E., 1986, Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc. Natl. Acad. Sci. U S A 83: 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D.E., Neale, E.A., Foster, G.A., d’Autremont, S.W., and Westbrook, G.L. 1987, Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J. Cell Biol. 104: 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D.E., Nicol, T., Warren, D., and Bowers, L.M. 1990, Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen. J. Neurosci. Res. 25: 386–394.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D.E., and Gozes, I. 1996, A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97: 2299–2307.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, D.E., Hauser, J., Neale, E., Rubinraut, S., Fridkin, M., Davidson, A., and Gozes, I. 1998, Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Ther. 285: 619–627.

    PubMed  CAS  Google Scholar 

  • Fisher, A., Brandeis, R., Pittel, Z., Karton, I., Sapir, M., Dachir, S., Levy, A., and Heldman, E. 1989, (+-)-cis-2-methyl-spiro(l, 3-oxathiolane-5, 3’) quinuclidine (AF102B): a new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats. Neurosci. Lett. 102: 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Gozes, I., Shani, Y., and Rostene, W.H. 1987, Developmental expression of the VIP-gene in brain and intestine. Brain Res. 388: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Gozes, I., Schachter, P., Shani, Y., Giladi, E. 1988, Vasoactive intestinal peptide gene expression from embryos to aging rats. Neuroendocrinology 47: 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Gozes, I., McCune, S.K., Jacobson, L., Warren, D., Moody, T.W., Fridkin, M., and Brenneman, D.E., 1991, An antagonist to vasoactiveintestinal peptide: effects on cellular functions in the central nervous system. J. Pharmacol. Exp. Ther. 257: 959–966.

    PubMed  CAS  Google Scholar 

  • Gozes, I., Lilling, G., Glazer, R., Ticher, A., Ashkenazi, I.E., Davidson, A., Rubinraut, S., Fridkin, M., and Brenneman, D.E. 1995, Superactive lipophilic peptides discriminate multiple vasoactive intestinal peptide receptors. J. Pharmacol. Exp. Ther. 273: 161–167.

    PubMed  CAS  Google Scholar 

  • Gozes, I., Bardea, A., Reshef, A., Zamostiano, R., Zhukovsky, S., Rubinraut, S., Fridkin, M., and Brenneman, D.E. 1996a, Novel neuroprotective strategy for Alzheimer’s disease: inhalation of a fatty neuropeptide. Proc. Natl. Acad. Sci. U S A 93: 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Gozes, I., and Brenneman, D.E. 1996b, Activity-dependent neurotrophic factor (ADNF): An extracellular neuroprotective chaperonin? J. Molec. Neurosci. 7: 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Gozes, I., Davidson, A., Gozes, Y., Mascolo, R., Barth, R., Warren, D., Hauser, J., and Brenneman, D.E. 1997, Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Develop. Brain Res. 99: 167–175.

    Article  CAS  Google Scholar 

  • Gozes, I., Perl, O., Giladi, E., Davidson, A., Ashur-Fabian, O., Rubinraut, S., and Fridkin, M. 1999, Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: neuroprotective drug design. Proc. Natl. Acad. Sci. U S A 96: 4143–4148.

    Article  PubMed  CAS  Google Scholar 

  • Gozes, I., Giladi, E., Pinhasov, A., Bardea, A., and Brenneman, D.E. 2000, Activitydependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. 293: 1091–1098.

    PubMed  CAS  Google Scholar 

  • Zamostiano, R., Pinhasov, A., Gelber, E., Steingart, R.A., Seroussi, E., Giladi, E., Bassan, M., Wollman, Y., Eyre, H.J., Mulley, J.C., Brenneman, D.E., and Gozes, I. 2000, Cloning and Characterization of the Human Activity-Dependent Neuroprotective Protein (ADNP). J. Biol. Chem. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gozes, I. et al. (2001). Intranasal Delivery of Bioactive Peptides or Peptide Analogues Enhances Spatial Memory and Protects Against Cholinergic Deficits. In: Kobiler, D., Lustig, S., Shapira, S. (eds) Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0579-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0579-2_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5141-2

  • Online ISBN: 978-1-4615-0579-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics