Skip to main content

The Role of Plasma Protein Binding in Drug Delivery to Brain

  • Chapter

Abstract

Many factors influence drug activity in brain. One of the most important is the ability of a drug to gain access to brain following systemic administration by passage across the blood-brain barrier (BBB). The BBB is formed at the cerebral capillaries by a continuous layer of endothelial cells that are joined together by high resistance tight junctions (Pardridge, 1998). These tight junctions effectively seal off the aqueous paracellular channels between brain endothelial cells, so that if a drug is to gain access to brain it must either be of the appropriate lipid solubility, hydrogen bonding capacity, and size to readily dissolve and diffuse across the lipophilic endothelial cell membranes (Habgood et al.,2000) or be transported across the endothelium by any of 20 or more active or facilitated carrier systems which are expressed in brain capillaries at high levels (Smith et al.,1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Deane, R. and Bradbury, M.W.B., 1990, Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat. J Neurochem 54: 905–914.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, R.K., McAllister, C.B., Inoue, M., and Wilkinson, G.R., 1989, Plasma binding and transport of diazepam across the blood-brain barrier: no evidence for in vivo enhanced dissociation. J. Clin. Invest. 84: 1155–1159.

    Article  PubMed  CAS  Google Scholar 

  • Fenerty, C.A., and Lindup, W.E., 1989, Brain uptake of L-tryptophan and diazepam: the role of plasma protein binding. J. Neurochem. 53: 416–422.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, S., Schwarcz, R., Rapoport, S.I., Takada, Y., and Smith, Q.R., 1991, Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56: 2007–2017.

    Article  PubMed  CAS  Google Scholar 

  • Habgood, M.D., Begley, D.J., and Abbott, N.J., 2000, Determinants of passive drug entry into the central nervous system. Cell. Mol. Neurobiol. 20: 231–253.

    Article  PubMed  CAS  Google Scholar 

  • Hansch, C., and Leo, A., 1995, Exploring QSAR. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Ives, N.K., and Gardiner, R.M., 1990, Blood-brain barrier permeability to bilirubin in the rat studied using intracarotid bolus injection and in situ brain perfusion techniques. Pediatr. Res. 27: 436–441.

    Article  PubMed  CAS  Google Scholar 

  • Jezequel, S.G., 1992, Central nervous system penetration of drugs: importance of physicochemical properties. In Progress in Drug Metabolism (G.G. Gibson, ed.); Taylor and Francis, London, pp. 141–178.

    Google Scholar 

  • Jones, D.R., Hall, S.D., Jackson, E.K., Branch, R.A., and Wilkinson, G.R., 1988, Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding. JPET 245: 816–822.

    CAS  Google Scholar 

  • Kragh-Hansen, U., 1981, Molecular aspects of ligand binding to serum albumin. Pharm. Rev. 33: 17–53.

    PubMed  CAS  Google Scholar 

  • Levitan, H., Ziylan, Z., Smith, Q.R., Takasato, Y., and Rapoport, S.I., 1984, Brain uptake of a food dye, erythrosin B, prevented by plasma protein binding. Brain Res. 322: 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T-H., and Lin, J.H., 1990, Effects of protein binding and experimental disease states on brain uptake of benzodiazepines in rats. JPET 253: 45–50.

    CAS  Google Scholar 

  • Morris, C.A., Keith, A.B., Edwardson, J.A., and Pullen, R.G.L., 1992, Uptake and distribution of iron and transferrin in the adult rat brain. J. Neurochem. 59: 300–306.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, V.A., and Rapoport, S.I., 1992, Brain transfer coefficients for 67Ga: comparison to 55Fe and effect of calcium deficiency. J. Neurochem. 58: 898–902.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., 1998, CNS drug design based on principles of blood-brain barrier transport. J. Neurochem. 70: 1781–1792..

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., Eisenberg, J., and Cefalu, W.T., 1985, Absence of albumin receptor on brain capillaries in vivo or in vitro. Am. J. Physiol. 249: E264–E267.

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M., and Landaw, E.M., 1984, Tracer kinetic model of blood-brain barrier transport of plasma protein-bound ligands. J. Clin. Invest. 74: 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge W.M. and Mietus, L.J., 1980, Palmitate and cholesterol transport through the blood-brain barrier. J. Neurochem. 34: 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Peters, T., 1996, All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego.

    Google Scholar 

  • Rabin, O., Hegedus, L., Bourre, J-M., and Smith, Q.R., 1993, Rapid brain uptake of manganese (II) across the blood-brain barrier. J. Neurochem. 61: 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Robinson P.J., Noronha, J., DeGeorge J J., Freed L.M., Nariai T., and Rapoport, S.I., 1992, A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res. Rev. 17: 187–214.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P.J., and Rapoport, S.I., 1986, Kinetics of protein binding determine rates of uptake of drugs by brain. Am. J. Physiol. 251: R1212–R1220.

    PubMed  CAS  Google Scholar 

  • Smith, Q.R., 1995, Carrier-mediated drug transport at the blood-brain barrier and the potential for drug targeting to the brain. In New Concepts of a Blood-Brain Barrier (J. Greenwood, et. al., eds.); Plenum Press, New York, pp. 265–276.

    Google Scholar 

  • Smith Q. R., 1996, Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharmaceut. Biotech. 8: 285–308.

    CAS  Google Scholar 

  • Smith, Q.R., and Nagura, H., 2001, Fatty acid uptake and incorporation in brain. J. Mol. Neurosci. 16: 81–86.

    Article  Google Scholar 

  • Smith, Q.R., Fisher, C., Allen, D., and Oki, J.: Development of a novel screening method to predict brain availability to drugs that bind highly to plasma proteins. Pharm. Sci. (Supplement) 1: 3115, 1998.

    Google Scholar 

  • Smith, Q.R., Fisher, C.R., and Liu, X.: Brain uptake of the lipophilic anticancer drug chlorambucil-Limitation by plasma protein binding. Pharm. Sci. (Supplement) 2: 2106, 200

    Google Scholar 

  • Spector, R., 1988, Fatty acid transport through the blood-brain barrier. J. Neurochem. 50: 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Svenson, A., Holmer, E., and Andersson, L-O., 1974, A new method for the measurement of dissociation rates for complexes between small ligands and proteins as applied to the palmitate and bilirubin complexes with serum albumin. BBA 342: 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Takasato, Y., Rapoport, S.I., and Smith, Q.R., 1984, An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 246: H484–H493.

    Google Scholar 

  • Tanaka, H., and Mizojiri, K., 1999, Drug-protein binding and blood-brain barrier permeability. J. Pharmacol. Exp. Ther. 288: 912–918.

    PubMed  CAS  Google Scholar 

  • Tillement, J-P., Houin, G., Zini, R., Urien, S., Albengres, E., Barre, J., Lecomte, M., D’Athis, P., and Sebille, B., 1984, The binding of drugs to blood plasma macromolecules: recent advances and therapeutic significance. In Advances in Drug Research 13: 60–94.

    Google Scholar 

  • Wosilait, W. D., and Soler-Argilaga, C., 1975, A theoretical analysis of the multiple binding of palmitate by bovine serum albumin: the relationship to uptake of free fatty acids by tissues. Life Sci. 17: 159–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, Q.R., Fisher, C., Allen, D.D. (2001). The Role of Plasma Protein Binding in Drug Delivery to Brain. In: Kobiler, D., Lustig, S., Shapira, S. (eds) Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0579-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0579-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5141-2

  • Online ISBN: 978-1-4615-0579-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics