Skip to main content

Abstract

The impetus for developing erosion models began in the 1930s and 1940s with the need to evaluate different soil conservation practices. Although the effectiveness of erosion-control measures can be tested in the field on demonstration plots, long-term records are required to collect meaningful data. The plots are also expensive to establish and maintain. Therefore, an alternative approach is needed whereby the effectiveness of different measures can be predicted from knowledge of local conditions of climate, soils, topography, and land cover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnert, F, 1970. A comparison of theoretical slope models with slopes in the field: Rept. Comm. Int. Geogr. Union on Slope Evolution, 6: 88-101.

    Google Scholar 

  • Ahnert, F, 1987, Approaches to dynamic equilibrium in theoretical simulations of slope development: Earth Surface Proc. Landf., 12: 3-15.

    Article  Google Scholar 

  • Ascough, JC II, Baffaut, C, Nearing, MA, and Liu, BY, 1997, The WEPP watershed model: I. Hydrology and erosion: Trans. Am. Soc. Agric. Eng., 40: 921-934.

    Google Scholar 

  • Bakker, JP, and Le Heux, JWN, 1947, Theory on central rectilinear recession of slopes: Koninklije Nederl. Akad van Wetenschappen Series B, 50: 959-966,1154-1162.

    Google Scholar 

  • Beasley, DB, 1986, Distributed parameter hydrologic and water quality modeling: in Agricultural Nonpoint Source Pollution: Model Selection And Application (A Giorgini and F Zingales, eds.), Elsevier, Amsterdam: 345-362.

    Google Scholar 

  • Beasley, DB, Huggins, LF, and Monke, EJ, 1980, ANSWERS: a model for watershed planning: Trans. Am. Soc. Agric. Eng., 23: 938-944.

    Google Scholar 

  • Bennett, JP, 1974, Concepts of mathematical modeling of sediment yield: Water Resour. Res., 10:485-492.

    Article  Google Scholar 

  • Beven, KJ, Wood, EF, and Sivapalan, M, 1988, On hydrological heterogeneity — catchment morphology and catchment response: J. Hydrol., 100: 353-375.

    Article  Google Scholar 

  • Boardman, J, and Favis-Mortlock, D, 1998, Modelling soil erosion by water: some conclusions: in Modelling Soil Erosion by Water (J Boardman and D Favis-Mortlock, eds.): NATO ASI Series, 1, 55: 515-517.

    Chapter  Google Scholar 

  • Bradbury, PA, Lea, NJ, and Bolton, P, 1993, Estimating catchment sediment yield: development of the GIS-based CALSITE model: HR Wallingford Report: OD 125.

    Google Scholar 

  • Browning, GM, Parish, CL, and Glass, JA, 1947, A method for determining the use and limitation of rotation and conservation practices in control of soil erosion in Iowa: Soil Sci. Soc. Am. Proc, 23: 246-249.

    Google Scholar 

  • Deer-Ascough, LA, 1995. A framework for uncertainty analysis of complex process-based models: PhD Thesis, Purdue Univ.

    Google Scholar 

  • De Jong, SM, 1994, Applications of reflective remote sensing for land degradation studies in a Mediterranean environment: Nederl. Geogr. Stud. No: 177.

    Google Scholar 

  • De Roo, APJ, 1993, Modelling surface runoff and soil erosion in catchments using Geographical Information Systems: Nederl. Geogr. Stud. No: 157.

    Google Scholar 

  • De Roo, APJ, 1996, Validation problems of hydrologic and soil-erosion catchment models: examples from a Dutch erosion project: in Advances in Hillslope Processes (MG Anderson and SM Brooks, eds.), Wiley, Chichester, UK: 669-683.

    Google Scholar 

  • De Roo, APJ, Wesseling, CG, and Ritsema, CJ, 1996a, LISEM: a single event physics-based hydrologic and soil erosion model for drainage basins. I. Theory, input and output: Hydrol. Proc, 10: 1107-1117.

    Google Scholar 

  • De Roo, APJ, Offermans, RJE, and Cremers, NHDT, 1996b, LISEM: a single event physics- based hydrologic and soil erosion model for drainage basins. II. Sensitivity analysis, validation and application: Hydrol. Proc., 10: 1119-1126.

    Article  Google Scholar 

  • Dickinson, A, and Collins, R, 1998, Predicting erosion and sediment yield at the catchment scale: in Soil Erosion at Multiple Scales (FWT Penning de Vries, F Agus and J Kerr, eds.), CAB International, Wallingford, UK: 317-342.

    Google Scholar 

  • Ellison, WD, 1947, Soil erosion studies: Agric. Eng., 28: 145-146, 197-201, 245-248, 297-300, 349-351,402-405, 442-450.

    Google Scholar 

  • Elwell, HA, 1978, Modelling soil losses in Southern Africa: J. Agric. Eng. Res., 23: 117-127.

    Article  Google Scholar 

  • Folly, A, Quinton, JN, and Smith, RE, 1999, Evaluation of the EUROSEM model using data from the Catsop watershed, The Netherlands: Catena, 37: 507-519.

    Google Scholar 

  • Foster, GR, Lane, LJ, Nowlin, JD, Laflen, JM, and Young, RA, 1981, Estimating erosion and sediment yield on field-sized areas: Trans. Am. Soc. Agric. Eng., 24: 1253-1263.

    Google Scholar 

  • Foster, GR, and Meyer, LD, 1972, A closed-form soil erosion equation for upland areas: in Sedimentation (HW Shen, ed.), Colorado State University, Fort Collins, Colorado: 12:1-12.

    Google Scholar 

  • Gardiner, V, 1973, Univariate distributional characteristics of some morphometric variables: Geogr. Annaler, 54-A: 147-153.

    Google Scholar 

  • Govers, G, 1996, Soil erosion process research: a state of the art: Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie, Klasse der Wettenschappen, Jargang58, No. 1.

    Google Scholar 

  • Hession, WC, and Shanholtz, VO, 1988, A geographical information system for targeting non-point source agricultural pollution: J. Soil Water Conserv., 43: 264-266.

    Google Scholar 

  • Holý, M, Svetlosanov, V, Handová, Z, Kos, Z, Váska, J, and Vrána, K, 1982, Procedures, numerical parameters and coefficients of the CREAMS model: application and verification in Czechoslovakia, International Institute for Applied Systems Analysis Collaborative Paper: CP-82-23.

    Google Scholar 

  • Jetten, V, De Roo, A, and Favis-Mortlock, D, 1999, Evaluation of field-scale and catchmentscale soil erosion models: Catena, 37: 521-541.

    Article  Google Scholar 

  • Kirkby, MJ, 1971, Hillslope process-response models based on the continuity equation, in: Slopes Form and Process: Inst. British Geogr. Spec. Pub. No. 3: 15-30.

    Google Scholar 

  • Knisel, WG, 1980, CREAMS: a field scale model for chemicals, runoff and erosion from agricultural management systems: USDA Conservation Research Report No. 26.

    Google Scholar 

  • Knisel, WG, and Svetlosanov, V, 1982, Review of case studies of CREAMS model application: in European and United States Case Studies in Application of the CREAMS Model (V Svetlosanov and WG Knisel, eds.), Int. Inst. Appl. Sys. Anal. Collab. Proc. Series: CP-82-S11: 121-135.

    Google Scholar 

  • McCuen, RH, 1973, The role of sensitivity analysis in hydrologic modelling, J. Hydrol., 18: 37-53.

    Article  Google Scholar 

  • Maner, SB, 1958, Factors affecting sediment delivery ratios in the Red Hills physiographic area: Trans. Am. Geophys. Union, 39: 669-675.

    Google Scholar 

  • Mati, BM, 1999, Erosion hazard assessment in the Upper Ewaso Ng’iro basin of Kenya: application of GIS, USLE and EUROSEM: PhD Thesis, Cranfield Univ..

    Google Scholar 

  • Meyer, LD, and Wischmeier, WH, 1969, Mathematical simulation of the process of soil erosion by water: Trans. Am. Soc. Agric. Eng., 12: 754-758, 762.

    Google Scholar 

  • Misra, RK, and Rose, CW, 1990, Manual for use of Program GUEST, Division of Australian Environment Studies Report, Griffith University, Brisbane, No. 4111.

    Google Scholar 

  • Morgan, RPC, 1996, Verification of the European Soil Erosion Model (EUROSEM) for varying slope and vegetation conditions: in Advances in Hillslope Processes (MG Anderson and SM Brooks, eds.), Wiley, Chichester: 657-668.

    Google Scholar 

  • Morgan, RPC, 2001, A simple approach to soil loss prediction: a revised Morgan-Morgan-Finney model: Catena, 44: 305-322.

    Article  Google Scholar 

  • Morgan, RPC, Morgan, DDV, and Finney, HJ, 1984, A predictive model for the assessment of soil erosion risk: J. Agric. Eng. Res., 30: 245-253.

    Article  Google Scholar 

  • Morgan, RPC, Morgan, DDV, and Finney, HJ, 1987, Predicting hillslope runoff and erosion in the Silsoe area of Bedfordshire, England, using the CREAMS model: in Soil Conservation and Productivity (I Pla Sentis, ed.), Sociedad Venezolana de la Ciencia del Suelo, Maracay: 892-899.

    Google Scholar 

  • Morgan, RPC, Quinton, JN, Smith, RE, Govers, G, Poesen, JWA, Auerswald, K, Chisci, G, Torri, D, and Styczen, ME, 1998, The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments: Earth Surface Proc. Landf, 23: 527-544.

    Article  Google Scholar 

  • Musgrave, GW, 1947, The quantitative evaluation of factors in water erosion, a first approximation: J. Soil Water Cons., 2: 133-138.

    Google Scholar 

  • Nash, JE, and Sutcliffe, JV, 1970, River flow forecasting through conceptual models. I. Discussion of principles: J. Hydrol., 10: 282-290.

    Article  Google Scholar 

  • Nearing, MA, 1998, Why soil erosion models overpredict small soil losses and underpredict large soil losses: Catena, 32: 15-22.

    Article  Google Scholar 

  • Nearing, MA, Deer-Ascough, L, and Chaves, HML, 1989, WEPP model sensitivity analysis: in USDA Water Erosion Prediction Project: Hillslope Profile Model Documentation (LJ Lane and MA Nearing, eds.), NSERL Report 2: 14.1-14.33.

    Google Scholar 

  • Nearing, MA, Deer-Ascough, L, and Laflen, JM, 1990, Sensitivity analysis of the WEPP hillslope profile erosion model: Trans. Am. Soc. Agric. Eng., 33: 839-849.

    Google Scholar 

  • Nearing, MA, Foster, GR, Lane, LJ, and Finckner, SC, 1989, A process-based soil erosion model for USDA-Water Erosion Prediction Project technology: Trans. Am. Soc. Agric. Eng., 32: 1587-1593.

    Google Scholar 

  • Onstad, CA, Piest, RF, and Saxton, KE, 1976, Watershed erosion and model validation for southwest Iowa: in Proc. Third Federal Inter-Agency Sedimentation Conference: PB-245-100: 1.22-1.34.

    Google Scholar 

  • Quinton, JN, 1994a, The validation of physics-based erosion models with particular reference to EUROSEM: PhD Thesis, Cranfield Univ.

    Google Scholar 

  • Quinton, JN, 1994b, Validation of physics-based erosion models with particular reference to EUROSEM: in Conserving Soil Resources: European Perspectives (RJ Rickson, ed.), CAB International, Wallingford, UK: 300-313.

    Google Scholar 

  • Quinton, JN, 1997, Reducing predictive uncertainty in model simulations: a comparison of two methods using the European Soil Erosion Model (EUROSEM): Catena, 30: 101-117.

    Article  Google Scholar 

  • Quinton, JN, and Morgan, RPC, 1998, EUROSEM: an evaluation with single event data from the C5 Watershed, Oklahoma, USA: in Modelling Soil Erosion by Water (J Boardman and D Favis-Mortlock, eds.), NATO ASI Series 1, 55: 65-74.

    Chapter  Google Scholar 

  • Quinton, J, and Rodriguez, F, 1999, Impact of live barriers on soil erosion in the Pairumani sub-catchment, Bolivia: Mountain Research and Development, 19: 292-299.

    Google Scholar 

  • Quinton, JN, and Veihe, A, 2000, Development and application of soil productivity index for Central America: soil erosion modelling. Individual Partner Final Report to Commission of European Communities, Research Contract: ERBI 18 CT 960096.

    Google Scholar 

  • Renfro, GW, 1975, Use of erosion equations and sediment-delivery ratios for predicting sediment yield: in Present and Prospective Technology for Predicting Sediment Yields and Sources, USDA Agric. Res. Service Pub.: ARS-S-40: 33-45.

    Google Scholar 

  • Risse, LM, Nearing, MA, Nicks, AD, and Laflen, JM, 1993, Assessment of error in the Universal Soil Loss Equation: Soil Sci. Soc. Am. J., 57: 825-833.

    Article  Google Scholar 

  • Roehl, JW, 1962, Sediment source areas, delivery ratios, and influencing morphological factors: Int. Assoc. Sci. Hydrol. Pub., 59: 202-213.

    Google Scholar 

  • Roose, EJ, 1977, Application of the Universal Soil Loss Equation of Wischmeier and Smith in West Africa: in So/7 Conservation and Management in the Humid Tropics (DJ Greenland and R Lal, eds.), Wiley, London: 177-187.

    Google Scholar 

  • Scheidegger, AE, 1961, Mathematical models of slope development: Bull. Geol. Soc. Am., 72: 37-50.

    Article  Google Scholar 

  • Schmidt, J, 1991, A mathematical model to simulate rainfall erosion: Catena Supplement, 19: 101-109.

    Google Scholar 

  • Schmidt, J, Werner, M, Michael, A, and Schmidt, W, 1997, EROSION 2D/3D — Ein Computermodell zur Simulation der Bodenerosion durch Wasser: Sächsisches Landesamt für Umwelt und Geologie, Sächsische Landesanstalt für Landwirtschaft.

    Google Scholar 

  • Singh, G, Babu, R, and Chandra, S, 1981, Soil loss prediction research in India: Central Soil and Water Conservation Research and Training Institute Bulletin: T 12/D9.

    Google Scholar 

  • Smith, DD, 1941, Interpretation of soil conservation data for field use: Agric. Eng., 22: 173-175. 6. Erosion Modeling 143

    Google Scholar 

  • Smith, RE, 1976, Field test of a distributed watershed erosion-sedimentation model: in Soil Erosion: Prediction and Control, Soil Cons. Soc. Am., Ankeny, IA: 201-209.

    Google Scholar 

  • Smith, RE, Goodrich, DC, Woolhiser, DA, and Unkrich, CL, 1995, KINEROS: a kinematic runoff and erosion model: in Computer Models of Watershed Hydrology (VJ Singh, ed.), Water Resour. Pub.: 697-732.

    Google Scholar 

  • Storm, B, Jorgensen, GH, and Styczen, M, 1987, Simulation of water flow and soil erosion processes with a distributed physics-based modelling system: Int. Assoc. Sci. Hydrol. Pub., 167:595-608.

    Google Scholar 

  • Styczen, M, and Nielsen, SA, 1989, A view of soil erosion theory, process-research and model building: possible interactions and future developments: Quaderni di Scienza del Suolo, 2: 27-45.

    Google Scholar 

  • Vatn, A, Bakken, LR, Bleken, MA, Botterweg, P, Lundeby, H, Romstad, E, Rørstad, PK, and Vold, A, 1996, Policies for reduced nutrient losses and erosion from Norwegian agriculture: Norw. J. Agric. Sci. Supp. No. 23.

    Google Scholar 

  • Veihe, A, and Quinton, J, 2000, Sensitivity analysis of EUROSEM using Monte Carlo simulation I: hydrological, soil and vegetation parameters, Hydrol. Proc, 14: 915-926.

    Google Scholar 

  • Veihe, A, Quinton, J, and Poesen, J, 2000, Sensitivity analysis of EUROSEM using Monte Carlo simulation II: the effect of rills and rock fragments: Hydrol. Proc, 14: 927-939.

    Article  Google Scholar 

  • Williams, JR, 1975, Sediment-yield prediction with universal equation using runoff energy factor: in Present and Prospective Technology for Predicted Sediment Yields and Sources, USDA Agric. Res. Serv. Pub.: ARS-S-40: 244-252.

    Google Scholar 

  • Williams, JR, and Berndt, HD, 1977, Sediment yield prediction based on watershed hydrology: Trans. Am. Soc. Agric. Eng., 20: 1100-1104.

    Google Scholar 

  • Wischmeier, WH, 1978, Use and misuse of the Universal Soil Loss Equation: J. Soil Water Cons., 31: 5-9.

    Google Scholar 

  • Wischmeier, WH, and Smith, DD, 1965, Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation: USDA Agric. Hdbk. No. 282.

    Google Scholar 

  • Wischmeier, WH, and Smith, DD, 1978, Predicting rainfall erosion losses: A guide to conservation planning: USDA Agric. Hdbk. No. 537.

    Google Scholar 

  • Woolhiser, DA, Smith, RE, and Goodrich, DC, 1990, KINEROS: a kinematic runoff and erosion model: Documentation and user manual: USDA Agric. Res. Serv. Pub.: ARS-77.

    Google Scholar 

  • Young, A, 1963, Deductive models of slope evolution: Rept. Comm. Int. Geog. Union on Slope Evolution No. 3: 45-66.

    Google Scholar 

  • Zingg, AW, 1940, Degree and length of land slope as it affects soil loss in runoff: Agric. Eng., 21: 59-64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, R.P.C., Quinton, J.N. (2001). Erosion Modeling. In: Harmon, R.S., Doe, W.W. (eds) Landscape Erosion and Evolution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0575-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0575-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5139-9

  • Online ISBN: 978-1-4615-0575-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics