Linear Feedback Control

  • Rush D. RobinettIII
  • Clark R. Dohrmann
  • G. Richard Eisler
  • John T. Feddema
  • Gordon G. Parker
  • David G. Wilson
  • Dennis Stokes
Part of the International Federation for Systems Research International Series on Systems Science and Engineering book series (IFSR, volume 19)


This chapter describes several linear feedback control techniques that can be used to robustly control flexible dynamic systems. As with any dynamic system, it is often difficult to accurately model the system with enough fidelity that open loop control performs as intended. Because modeling errors are often unavoidable, linear feedback is often used to compensate for these modeling uncertainty. Even though many of the flexible dynamic systems are nonlinear, their models can be adequately linearized about operating points and standard linear feedback control techniques can be applied with satisfactory results.


Feedforward Control Linear Quadratic Regulator Open Loop Control Linear Quadratic GAUSSIAN Linear Feedback Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Jones, B. J. Petterson, and J. C. Werner, “Swing damped movement of suspended objects,” Sandia Report 87-2189, Reprinted February 1993.Google Scholar
  2. 2.
    B. C. Kuo, Automatic Control Systems, 4th Ed., Prentice-Hall, 1982.Google Scholar
  3. 3.
    B. J. Petterson, R. D. Robinett, and J. C. Werner, “Lag-stabilized force feedback damping,” SAND91-0194, May 1991.Google Scholar
  4. 4.
    J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls: Part II, Roskam Aviation and Engineering Corporations, Lawrence, Kansas, 1979.Google Scholar
  5. 5.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Univ. Press, Cambridge, 1988.MATHGoogle Scholar
  6. 6.
    R. D. Robinett, B. J. Petterson, and J. C. Fahrenholtz, “Lag-stabilized force feedback damping,” Journal of Intelligent and Robotic Systems, 21: 277–285, 1998.MATHCrossRefGoogle Scholar
  7. 7.
    C. Abdallah, P. Dorato, J. Benitez-Read, and R. Byrne, “Delayed positive feedback can stabilize oscillatory systems,” Proceeding of the American Control Conference, San Francisco, CA, pp. 3106–7, 1993.Google Scholar
  8. 8.
    R. H., Jr. Cannon, and Schmitz, E., “Initial experiments on the end-point control of a flexible one-link robot,” International Journal of Robotics Research, 3(3):62–75, 1984.CrossRefGoogle Scholar
  9. 9.
    C. M. Oakley, and R. H. Cannon, “Anatomy of an experimental two-link flexible manipulator under end-point control,” In proceedings of the IEEE Conference on Decision and Control, Honolulu, HI, Dec. 1990.Google Scholar
  10. 10.
    C. M. Oakley, and C. H. Barratt, “End-point controller design for an experimental two-link flexible manipulator using convex optimization,” In proceedings of the American Control Conference, pages 1752–1759, San Diego, CA, May 1990.Google Scholar
  11. 11.
    P. A. Chodovarapu, and M. W. Spong, “On non-collocated control of a single flexible link,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April 1996, pp. 1101–1106.Google Scholar
  12. 12.
    M. Karkoub, and K. Tamma, “Modelling and µ-synthesis control of flexible manipulators,” Computers and Structures 79 (2001), pp. 543–551.CrossRefGoogle Scholar
  13. 13.
    J. T. Feddema, G. R. Eisler, and D. J. Segalman, “Integration of Model-Based and Sensor-Based Control of a Two-link Flexible Robot Arm,” Proceedings of the 1990 IEEE Conference on Systems Engineering, Pittsburgh, PA, August 9–11, 1990.Google Scholar
  14. 14.
    R. F. Stengel, Stochastic Optimal Control: Theory and Application, John Wiley & Sons, Inc., 1986.Google Scholar
  15. 15.
    P. S. Maybeck, Stochastic Models, Estimation, and Control, Volume 1, Academic Press, New York, 1979.Google Scholar
  16. 16.
    A. E. Bryson, and Y. Ho, Applied Optimal Control, Hemisphere Publishing Corporation, Washington, D.C., 1975.Google Scholar
  17. 17.
    B. D. O. Anderson, and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice-Hall, New Jersey, 1990.MATHGoogle Scholar
  18. 18.
    E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer-Verlag, New York, 1990.MATHGoogle Scholar
  19. 19.
    F. L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory, John Wiley & Sons, Inc., New York, 1986.MATHGoogle Scholar
  20. 20.
    K. J. Astrom, Introduction to Stochastic Control Theory, Academic Press, New York, 1970.Google Scholar
  21. 21.
    B. D. O. Anderson, and J. B. Moore, Optimal Filtering, Prentice-Hall Information and System Sciences Series, 1979.MATHGoogle Scholar
  22. 22.
    J. L. Junkins, An Introduction to Optimal Estimation of Dynamic Systems, Sijhhof & Noordhoff International Publishers, The Netherlands, 1978.CrossRefGoogle Scholar
  23. 23.
    R. E. Kalman, and R. S. Bucy, “New results in linear filtering and prediction theory,” Transactions of ASME, Journal of Basic Engineering, Vol. 83, pp. 95–107, 1961.MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. A. Ruymgaart, and T. T. Soong, Mathematics of Kalman-Bucy Filtering, Springer-Verlag, New York, 1988.MATHCrossRefGoogle Scholar
  25. 25.
    D. A. Schoenwald, J. T. Feddema, G. R. Eisler, and D. J. Segalman, “Minimum-Time Trajectory Control of Two-Link Flexible Robotic Manipulator,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, April 1991, pp. 2114–2120.Google Scholar
  26. 26.
    D. J. Segalman, “A mathematical formulation for the rapid simulation of a flexible multilink manipulator,” SAND89-2308, Sandia National Laboratories, Albuquerque, NM.Google Scholar
  27. 27.
    T. J. Tarn, A. K. Bejczy, and X. Ding, “On the modelling of flexible robot arms,” Department of Systems Science and Mathematics, Washington University, St. Louis, MO, Robotics Laboratory Report SSM-RL-88-11, September 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Rush D. RobinettIII
    • 1
  • Clark R. Dohrmann
    • 1
  • G. Richard Eisler
    • 1
  • John T. Feddema
    • 1
  • Gordon G. Parker
    • 2
  • David G. Wilson
    • 3
  • Dennis Stokes
    • 4
  1. 1.Sandia National LaboratoriesUSA
  2. 2.Michigan Technological UniversityHoughtonUSA
  3. 3.WAYA Research, Inc.AlbuquerqueUSA
  4. 4.S. EnterprisesTacomaUSA

Personalised recommendations