Skip to main content

Gaseous Fuels

  • Chapter
Applied Chemistry
  • 682 Accesses

Abstract

The combustion process is usually an oxidation reaction involving oxygen and the oxidant and is in many cases in the gaseous state. Thus, the burning candle or the alcohol burner are examples of solid and liquid fuels burning in the gaseous state. Coal however does not volatilize and the combustion of many solids, including some plastics, occurs at the surface. By gaseous fuels, consideration is given to the storage state at ambient temperatures even though the fuel in usage can be in the liquid state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • G. D. Berry, Hydrogen as a Transportation Fuel: Costs and Benefits. Bus. Tech. Bks. (1997).

    Google Scholar 

  • R. W. Willett, The 1996 Natural Gas Handbook, Wiley, New York (1996).

    Google Scholar 

  • H. Pohl, Hydrogen and other Alternate Sources of Energy for Air and Ground Transportation,Wiley, New York (1995).

    Google Scholar 

  • S. R. Bell and R. Sekar, Editors, Natural Gas and Alternate Fuels for Engines, Vol. 21, ASME,Am. Soc. Mech. Eng., Fairfield, New Jersey (1994).

    Google Scholar 

  • G. D. Brewer, Editor, Hydrogen Aircraft Technology, CRC Press, Boca Raton, Florida, (1991).

    Google Scholar 

  • R. E. Billings, The Hydrogen World View, Int. Acad. Science, Independence, Missouri (1991).

    Google Scholar 

  • L.Marinescu-Pasoi et al., Hydrogen Metal Hydride Storage with Integrated Catalytic Recom-biner for Mobile Application, Int. J. Hydr. Energy 16(6), 407–412 (1991).

    Article  CAS  Google Scholar 

  • M. R. Swain et al., Hydrogen Peroxide Emissions from a Hydrogen Fueled Engine, Int. J. Hydr.Energy. 15(4), 263–266 (1990).

    Article  CAS  Google Scholar 

  • A. Melvin, Gas Taps its Natural Flare, New Scientist, October 7, p. 59 (1989).

    Google Scholar 

  • Natural gas - An Alternative Transportation Fuel, EMR Ottawa, Ontario (1988).

    Google Scholar 

  • D. L. Klass, Energy from Biomass and Wastes -1983 Update, Inst. Gas Technol., Chicago,Illinois (1984).

    Google Scholar 

  • D. L. Klass, Methane from Anaerobic Fermentation, Science 223, 1021 (1984).

    Article  CAS  Google Scholar 

  • J. O’M. Bockris, Energy Options. Real Economics and the Solar-Hydrogen System, Taylor and Francis Ltd., London (1980).

    Google Scholar 

  • C. Bell et al., Methane: Fuel of the Future, Prism Press, Dorset, United Kingdom (1980).

    Google Scholar 

  • T. Gold and S. Soter, The Deep-Earth-Gas Hypothesis, Sci. Amer. 242(6), June p. 154 (1980).

    Article  CAS  Google Scholar 

  • J. J. Reilly and G. D. Sandrock, Hydrogen Storage in Metal Hydrides, Sci. Amer. February, 118(1980).

    Google Scholar 

  • Hydrogen: Its Technology and Implications, 5 Vol., CRC Press, Cleveland, Ohio (1977– 1979).

    Google Scholar 

  • R. L. Woolley and D. L. Hendrickson, Water Induction in Hydrogen Powered I.C. Engines, Int.J. Hydr. Energy 1, 401 (1977).

    Article  CAS  Google Scholar 

  • R. L. Woolley, Performance of a Hydrogen Powered Transit Vehicle, Proc. 11th Intersociety Energy Conversion Conference, Lake Tahoe (1976).

    Google Scholar 

  • R. E. Billings et al., Ignition Parameters for Hydrogen Engines, Proc. 9th Intersociety Energy Conversion Engineering Conference, San Francisco, CA (1974).

    Google Scholar 

  • J. G. Finegold et al., The U.CL.A. Hydrogen Car: Design, Construction, and Performance, Paper SAE 730507, Soc. Auto. Eng, New York (1973).

    Book  Google Scholar 

  • R. E. Billings and F. E. Lynch, Performance and Nitric Oxide Control Parameters of the Hydrogen Engine. Publ. No. 73002, Energy Research, Provo, Utah (1973).

    Google Scholar 

  • R. O. King et al. The Hydrogen Engine: Combustion Knock and Related Flame Velocity,Transactions E.I.C. 2, 143 (1958).

    Google Scholar 

  • R. O. King and M. Rand, The Oxidation, Decomposition, Ignition, and Detonation of Fuel Vapors and Gases, XXVII. The Hydrogen Engine, Can. J. Technol. 33, 445 (1955).

    CAS  Google Scholar 

  • Biomass to gases and liquid fuels, http://www.gpc.peachnet.edu/

    Google Scholar 

  • National Fuel Gas Co., http://www.natfuel.com/

    Google Scholar 

  • Pan American Enterprises Inc. (NG, H2), http://www.panent.com/

    Google Scholar 

  • US Geological Survey, resources, http://www.usgs.gov/

    Google Scholar 

  • HyWeb-H2 Fuel Cell, http://www.hydrogen.org/index-e.html

    Google Scholar 

  • Gaseous explosions, http://www.directedtechnologies.com/energy/safety.html

    Google Scholar 

  • Helium source and reserves, http://members.truepath.com/gr/helium.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gesser, H.D. (2002). Gaseous Fuels. In: Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0531-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0531-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5119-1

  • Online ISBN: 978-1-4615-0531-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics