Skip to main content

Hormones, Obesity, Learning, and Breathing — the Many Functions of Mammalian Single-Minded Genes

  • Chapter
  • 207 Accesses

Abstract

There are two mammalian Single-minded (Sim) genes. Both of them have been shown to play important roles during normal mammalian embryonic development. Each of them has also been directly implicated in contributing to the genetic causes of specific human conditions such as obesity and learning disability. While much is inferred about the genes’ functions by means of mutation and over-expression studies in transgenic mouse models, little is known about what causes their dysfunction to lead to developmental abnormalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delabar, J. M., D. Theophile, Z. Rahmani, Z. Chettouh, J. L. Blouin, M. Prieur, B. Noel, and P. M. Sinet. 1993. Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur. J. Hum. Genet. 1:114–24.

    PubMed  CAS  Google Scholar 

  2. Chen, H., R. Chrast, C. Rossier, A. Gos, S. E. Antonarakis, J. Kudoh, A. Yamaki, N. Shindoh, H. Maeda, S. Minoshima, et al. 1995. Single-minded and Down syndrome. Nature Genetics 10:9–10.

    Article  PubMed  Google Scholar 

  3. Dahmane, N., G. Charron, C. Lopes, M. L. Yaspo, C. Maunoury, L. Decorte, P. M. Sinet, B. Bloch, and J. M. Delabar. 1995. Down syndrome-critical region contains a gene homologous to Drosophila sim expressed during rat and human central nervous system development. Proc. Natl. Acad. Sci. USA 92:9191–9195.

    Article  PubMed  CAS  Google Scholar 

  4. Crews, S. T. 1998. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 12:607–620.

    Article  PubMed  CAS  Google Scholar 

  5. Crews, S. T., and C.-M. Fan. 1999. Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Curr. Opin. Genet. Dev. 9:580–587.

    Article  PubMed  CAS  Google Scholar 

  6. Ema, M., M. Morita, S. Ikawa, M. Tanaka, Y. Matsuda, O. Gotoh, Y. Saijoh, H. Fujii, H. Hamada, and Y. Fujii-Kuriyama. 1996. Two new members of murine Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol. Cell. Biol. 16:5865–5875.

    PubMed  CAS  Google Scholar 

  7. Fan, C.-M., E. Kuwana, A. Bulfone, C. F. Fletcher, N. G. Copeland, N. A. Jenkins, S. Crews, S. Martinez, L. Puelles, J. L. R. Rubenstein, et al. 1996. Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down Syndrome. Mol. Cell. Neuro. 7:1–16.

    Article  CAS  Google Scholar 

  8. Moffett, P., M. Dayo, M. Reece, M. K. McCormick, and J. Pelletier. 1996. Characterization of msim, a murine homologue of the Drosophila sim transcription factor. Genomics 35:144–55.

    Article  PubMed  CAS  Google Scholar 

  9. Yamaki, A., S. Noda, J. Kudoh, N. Shindoh, H. Maeda, S. Minoshima, K. Kawasaki, Y. Shimizu, and N. Shimizu. 1996. The mammalian single-minded (SIM) gene: mouse cDNA structure and diencephalic expression indicate a candidate gene for Down syndrome. Genomics 35:136–43.

    Article  PubMed  CAS  Google Scholar 

  10. Reeves, R. H., N. G. Irving, T. H. Moran, A. Wohn, C. Kitt, S. S. Sisodia, C. Schmidt, R. T. Bronson, and M. T. Davisson. 1995. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nature Genetics 11:177–184.

    Article  PubMed  CAS  Google Scholar 

  11. Chrast, R., H. S. Scott, H. Chen, J. Kudoh, C. Roisser, S. Minoshima, Y. Wang, N. Shimizu, and S. E. Antonarakis. 1997. Cloning of two human homologs of the Drosophila single-minded gene SIM1 on Chromosome 6q and SIM2 on 21q within the Down Syndrome chromosomal region. Genome Res. 7:615–624.

    PubMed  CAS  Google Scholar 

  12. Chrast, R., H. S. Scott, R. Madani, L. Huber, D. P. Wolfer, M. Prinz, A. Aguzzi, H. P. Lipp, and S. E. Antonarakis. 2000. Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum. Mol. Genet. 9:1853–64.

    Article  PubMed  CAS  Google Scholar 

  13. Probst, M. R., C.-M. Fan, M. Tessier-Lavigne, and O. Hankinson. 1997. Two murine homologs of the Drosophila Single-minded protein that interact with the mouse aryl hydrocarbon receptor nuclear translocator protein. J. Biol. Chem. 272:4451–4457.

    Article  PubMed  CAS  Google Scholar 

  14. Swanson, H. I., W. K. Chan, and C. A. Bradfield. 1995. DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J. Biol. Chem. 280:26292–26302.

    Google Scholar 

  15. Jain, S., E. Maltepe, M. M. Lu, C. Simon, and C. A. Bradfield. 1998. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73:117–23.

    Article  PubMed  CAS  Google Scholar 

  16. Ikeda, M., and M. Nomura. 1997. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem. Biophys. Res. Commun. 233:258-64.

    Article  PubMed  Google Scholar 

  17. Michaud, J. L., T. Rosenquist, N. R. May, and C.-M. Fan. 1998. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. 12:3264–3275.

    Article  PubMed  CAS  Google Scholar 

  18. Sonnenfeld, M., M. Ward, G. Nystrom, J. Mosher, S. Stahl, and S. Crews. 1997. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4583–4594.

    Google Scholar 

  19. Moffett, P., and J. Pelletier. 2000. Different transcriptional properties of mSim-1 and mSim-2. FEBS Lett. 466:80–86.

    Article  PubMed  CAS  Google Scholar 

  20. de Turckheim, M. C, J. M. Clavert, and M. Paira. 1991. Costal exostoses, complicated in the neonatal period, by brachial plexus paralysis. A distinct entity of exostoses? Ann. Pediatr. (Paris) 38:23–5.

    Google Scholar 

  21. Ema, M., S. Ikegami, T. Hosoya, J. Mimura, H. Ohtani, K. Nakao, K. Inokuchi, M. Katsuki, and Y. Fujii-Kuriyama. 1999. Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down’s syndrome. Hum. Mol. Genet. 8:1409–1415.

    Article  PubMed  CAS  Google Scholar 

  22. Epstein, D. J., L. Martinu, J. L. Michaud, K. M. Losos, C. Fan, and A. L. Joyner. 2000. Members of the bHLH-PAS family regulate shh transcription in forebrain regions of the mouse CNS. Development 127:4701–9.

    PubMed  CAS  Google Scholar 

  23. Belloni, E., M. Muenke, E. Roessler, G. Traverso, J. Siegel-Bartelt, A. Frumkin, H. F. Mitchell, H. Donis-Keller, C. Helms, A. V. Hing, et al. 1996. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat. Genet. 14:353–6.

    Article  PubMed  CAS  Google Scholar 

  24. Roessler, E., E. Belloni, K. Gaudenz, P. Jay, P. Berta, S. W. Scherer, L. C. Tsui, and M. Muenke. 1996. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14:357–60.

    Article  PubMed  CAS  Google Scholar 

  25. Kandel, E. R., J. H. Scwartz, and T. M. JEssell. 2000. Principles of Neural Science, 4th ed, vol. Ch. 49. McGraw-Hill, New York, New York.

    Google Scholar 

  26. Du Vigneaud, V. 1995. Hormones of posterior pituitary glands: Oxytocin and vasopressin. Harvey Lecture Ser. L:l–26.

    Google Scholar 

  27. Sawchenko, P. E., T. Imaki, and W. Vale. 1992. Co-localization of neuroactive substances in the endocrine hypothalamus. Ciba Found. Symp. 168:16–30; discussion 30–42.

    PubMed  CAS  Google Scholar 

  28. Swanson, L. W. 1986. Organization of mammalian neuroendocrine system, p. 317–363. In V. B. Mountcastle, F. E. Bloom, and S. R. Geiger (ed.), Handbook of Physiology, Section 1: Ther nervous system, Vol. IV, Intrinsic regulatory systems of brain. American Physiology Society, Bethesda, MD.

    Google Scholar 

  29. Swanson, L. W., and P. E. Sawchenko. 1983. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6:269–324.

    Article  PubMed  CAS  Google Scholar 

  30. Altman, J., and S. A. Bayer. 1978. Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J. Comp. Neurol. 182:973–93.

    Article  PubMed  CAS  Google Scholar 

  31. Burgunder, J. M., and T. Taylor. 1989. Ontogeny of thyrotropin-releasing hormone gene expression in the rat diencephalon. Neuroendocrinology 49:631–40.

    Article  PubMed  CAS  Google Scholar 

  32. Hyodo, S., C. Yamada, T. Takezawa, and A. Urano. 1992. Expression of provasopressin gene during ontogeny in the hypothalamus of developing mice. Neuroscience 46:241–50.

    Article  PubMed  CAS  Google Scholar 

  33. Jing, X., A. K. Ratty, and D. Murphy. 1998. Ontogeny of the vasopressin and oxytocin RNAs in the mouse hypothalamus. Neurosci. Res. 30:343–9.

    Article  PubMed  CAS  Google Scholar 

  34. Karim, M. A., and J. C. Sloper. 1980. Histogenesis of the supraoptic and paraventricular neurosecretory cells of the mouse hypothalamus. J. Anat. 130:341–7.

    PubMed  CAS  Google Scholar 

  35. Keegan, C. E., J. P. Herman, I. J. Karolyi, K. S. O’Shea, S. A. Camper, and A. F. Seasholtz. 1994. Differential expression of corticotropin-releasing hormone in developing mouse embryos and adult brain. Endocrinology 134:2547–55.

    Article  PubMed  CAS  Google Scholar 

  36. Muglia, L., L. Jacobson, P. Dikkes, and J. A. Majzoub. 1995. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373:427–32.

    Article  PubMed  CAS  Google Scholar 

  37. Nishimori, K., L. J. Young, Q. Guo, Z. Wang, T. R. Insel, and M. M. Matzuk. 1996. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc. Natl. Acad. Sci. USA 93:11699–704.

    Article  PubMed  CAS  Google Scholar 

  38. Okamura, H., K. Fukui, E. Koyama, H. L. Tsutou, T. Tsutou, H. Terubayashi, H. Fujisawa, and Y. Ibata. 1983. Time of vasopressin neuron origin in the mouse hypothalamus: examination by combined technique of immunocytochemistry and [3H]thymidine autoradiography. Brain Res. 285:223–6.

    PubMed  CAS  Google Scholar 

  39. Schmale, H., and D. Richter. 1984. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308:705–9.

    Article  PubMed  CAS  Google Scholar 

  40. Seasholtz, A. F., S. A. Bourbonaiser, C. E. Harnden, and S. A. Camper. 1991. Nucleotide sequence and expression of mouse corticotropin releasing hormone gene. Mol. Cell. Neurosci. 2:266–273.

    Article  PubMed  CAS  Google Scholar 

  41. Shiosaka, S., K. Takatsuki, M. Sakanaka, S. Inagaki, H. Takagi, E. Senba, Y. Kawai, H. Iida, H. Minagawa, Y. Hara, et al. 1982. Ontogeny of somatostatin-containing neuron system of the rat: immunohistochemical analysis. II. Forebrain and diencephalon. J. Comp. Neurol. 204:211–24.

    Article  PubMed  CAS  Google Scholar 

  42. Nakai, S., H. Kawano, T. Yudate, M. Nishi, J. Kuno, A. Nagata, K. Jishage, H. Hamada, H. Fujii, K. Kawamura, et al. 1995. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev. 9:3109–21.

    Article  PubMed  CAS  Google Scholar 

  43. Schonemann, M. D., A. K. Ryan, R. J. McEvilly, S. M. O’Connell, C. A. Arias, K. A. Kalla, P. Li, P. E. Sawchenko, and M. G. Rosenfeld. 1995. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev. 9:3122–35.

    Article  PubMed  CAS  Google Scholar 

  44. Li, P., X. He, M. R. Gerrero, M. Mok, A. Aggarwal, and M. G. Rosenfeld. 1993. Spacing and orientation of bipartite DNA-binding motifs as potential functional determinants for POU domain factors. Genes Dev. 7:2483–96.

    Article  PubMed  CAS  Google Scholar 

  45. Anderson, M. G., G. L. Perkins, P. Chittick, R. J. Shrigley, and W. A. Johnson. 1995. drifter, a Drosophila POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline glia. Genes & Dev. 9:123–137.

    Article  Google Scholar 

  46. Michaud, J. L., C. DeRossi, N. R. May, B. C. Holdener, and C. M. Fan. 2000. ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev. 90:253–261.

    Article  PubMed  CAS  Google Scholar 

  47. Hosoya, T., Y. Oda, S. Takahashi, M. Morita, S. Kawauchi, M. Ema, M. Yamamoto, and Y. Fujii-Kuriyama. 2001. Defective development of secretory neurones in the hypothalamus of Arnt2-knockout mice. Genes Cells 6:361–74.

    Article  PubMed  CAS  Google Scholar 

  48. Keith, B., D. M. Adelman, and M. C. Simon. 2001. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc. Natl. Acad. Sci. USA 98:6692–7.

    Article  PubMed  CAS  Google Scholar 

  49. Acampora, D., M. P. Postiglione, V. Avantaggiato, M. Di Bonito, F. M. Vaccarino, J. Michaud, and A. Simeone. 1999. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev. 13:2787–800.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, W., and T. Lufkin. 2000. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev. Biol. 227:432–49.

    Article  PubMed  CAS  Google Scholar 

  51. Simeone, A., M. R. D’Apice, V. Nigro, J. Casanova, F. Graziani, D. Acampora, and V. Avantaggiato. 1994. Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 13:83–101.

    Article  PubMed  CAS  Google Scholar 

  52. Holder, J. L., N. F. Butte, and A. R. Zinn. 2000. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum. Mol. Genet. 9:101–8.

    Article  PubMed  CAS  Google Scholar 

  53. Gilhuis, H. J., C. M. van Ravenswaaij, B. J. Hamel, and F. J. Gabreels. 2000. Interstitial 6q deletion with a Prader-Willi-like phenotype: a new case and review of the literature. Eur. J. Paediatr. Neurol. 4:39–43.

    Article  PubMed  CAS  Google Scholar 

  54. Turleau, C, G. Demay, M. O. Cabanis, G. Lenoir, and J. de Grouchy. 1988. 6ql monosomy: a distinctive syndrome. Clin. Genet. 34:38–42.

    PubMed  Google Scholar 

  55. Villa, A., M. Urioste, J. M. Bofarull, and M. L. Martinez-Frias. 1995. De novo interstitial deletion ql6.2q21 on chromosome 6. Am. J. Med. Genet. 55:379–83.

    Article  PubMed  CAS  Google Scholar 

  56. Michaud, J. L., F. Boucher, A. Melnyk, F. Gauthier, E. Goshu, E. Levy, G. A. Mitchell, J. Himms-Hagen, and C. M. Fan. 2001. Siml haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 10:1465–73.

    Article  PubMed  CAS  Google Scholar 

  57. Elmquist, J. K., C. F. Elias, and C. B. Saper. 1999. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–32.

    Article  PubMed  CAS  Google Scholar 

  58. Rosenbaum, M., R. L. Leibel, and J. Hirsch. 1997. Obesity. N. Engl. J. Med. 337:396–407.

    Article  PubMed  CAS  Google Scholar 

  59. Schwartz, M. W., S. C. Woods, D. Porte, Jr., R. J. Seeley, and D. G. Baskin. 2000. Central nervous system control of food intake. Nature 404:661–71.

    PubMed  CAS  Google Scholar 

  60. Sawchenko, P. E. 1998. Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J. Comp. Neurol. 402:435–41.

    Article  PubMed  CAS  Google Scholar 

  61. Leibowitz, S. F., N. J. Hammer, and K. Chang. 1981. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav. 27:1031–40.

    Article  PubMed  CAS  Google Scholar 

  62. Sims, J. S., and J. F. Lorden. 1986. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res. 22:265–81.

    Article  PubMed  CAS  Google Scholar 

  63. Tokunaga, K., M. Fukushima, J. W. Kemnitz, and G. A. Bray. 1986. Comparison of ventromedial and paraventricular lesions in rats that become obese. Am. J. Physiol. 251:R1221–7.

    Google Scholar 

  64. Weingarten, H. P., P. K. Chang, and T. J. McDonald. 1985. Comparison of the metabolic and behavioral disturbances following paraventricular- and ventromedial-hypothalamic lesions. Brain Res. Bull. 14:551–9.

    Article  PubMed  CAS  Google Scholar 

  65. Kotz, C. M., M. K. Grace, J. Briggs, A. S. Levine, and C. J. Billington. 1995. Effects of opioid antagonists naloxone and naltrexone on neuropeptide Y-induced feeding and brown fat thermogenesis in the rat. Neural site of action. J. Clin. Invest. 96:163–70.

    Article  PubMed  CAS  Google Scholar 

  66. Cowley, M. A., N. Pronchuk, W. Fan, D. M. Dinulescu, W. F. Colmers, and R. D. Cone. 1999. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24:155–63.

    Article  PubMed  CAS  Google Scholar 

  67. Kotz, C. M., C. F. Wang, J. E. Briggs, A. S. Levine, and C. J. Billington. 2000. Effect of NPY in the hypothalamic paraventricular nucleus on uncoupling proteins 1, 2, and 3 in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R494–8.

    Google Scholar 

  68. Wright, D. E., K. B. Seroogy, K. H. Lundgren, B. M. Davis, and L. Jennes. 1995. Comparative localization of serotonin 1 A, IC, and 2 receptor subtype mRNAs in rat brain. J. Comp Neurol. 351:357–73.

    Article  PubMed  CAS  Google Scholar 

  69. Mercer, J. G., C. B. Lawrence, and T. Atkinson. 1996. Regulation of galanin gene expression in the hypothalamic paraventricular nucleus of the obese Zucker rat by manipulation of dietary macronutrients. Brain Res. Mol. Brain Res. 43:202–8.

    Article  PubMed  CAS  Google Scholar 

  70. Goshu, E., H. Jin, R. Fasnacht, M. Sepenski, J. L. Michaud, and C. M. Fan. 2002. Sim2 mutants have developmental defects not overlapping with those of Siml mutants. Mol. Cell. Biol. 22:4147–57.

    Article  PubMed  CAS  Google Scholar 

  71. Shamblott, M. J., E. M. Bugg, A. M. Lawler, and J. D. Gearhart. 2002. Craniofacial abnormalities resulting from targeted disruption of the murine Sim2 gene. Dev. Dyn. 224:373–80.

    Article  PubMed  CAS  Google Scholar 

  72. Giampietro, P. F., C. L. Raggio, and R. D. Blank. 1999. Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am. J. Med. Genet. 83:164–77.

    Article  PubMed  CAS  Google Scholar 

  73. Porter, D. E., and A. H. Simpson. 1999. The neoplastic pathogenesis of solitary and multiple osteochondromas. J. Pathol. 188:119–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fan, CM. (2003). Hormones, Obesity, Learning, and Breathing — the Many Functions of Mammalian Single-Minded Genes. In: Crews, S.T. (eds) PAS Proteins: Regulators and Sensors of Development and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0515-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0515-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5115-3

  • Online ISBN: 978-1-4615-0515-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics