Skip to main content

The HIF-1 Family of bHLH-PAS Proteins: Master Regulators of Oxygen Homeostasis

  • Chapter
PAS Proteins: Regulators and Sensors of Development and Physiology

Abstract

Above all other elements, molecules, and compounds, O2 is the critical environmental substrate that must be delivered to all cells of metazoan organisms on a virtually continuous basis for survival. The evolution of multicellular animals in which oxygen could no longer be acquired by all cells via simple diffusion necessitated the co-evolution of physiological systems specialized for O2 delivery, which became progressively more complex as body size increased, most notably with the appearance of the vertebrates. The HIF-1 (hypoxia-inducible factor 1) family of bHLH-PAS transcription factors appears to have evolved as a specialized system for regulating oxygen homeostasis at the level of gene expression in metazoans. HIF-1 is present in simple invertebrates such as the roundworm Caenorhabditis elegans, which consists of ~103 cells and relies on simple diffusion for O2 transport, more complex invertebrates such as the fruit fly Drosophila melanogaster, in which O2 is distributed through the body via a set of specialized tracheal tubes, and in complex vertebrates such as Homo sapiens, which consist of > 1013 cells that are supplied with O2 via the combined functioning of highly complex and specialized circulatory and respiratory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semenza, G. L. 2001. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7:345–50.

    Article  PubMed  CAS  Google Scholar 

  2. Semenza, G. L. 2002. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8:S62–7.

    Article  Google Scholar 

  3. Beck, I., S. Ramirez, R. Weinmann, and J. Caro. 1991. Enhancer element at the 3’-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 266:15563–6.

    PubMed  CAS  Google Scholar 

  4. Pugh, C. W., C. C. Tan, R. W. Jones, and P. J. Ratcliffe. 1991. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3' to the mouse erythropoietin gene. Proc. Natl. Acad. Sci. USA 88:10553–7.

    Article  PubMed  CAS  Google Scholar 

  5. Semenza, G. L., M. K. Nejfelt, S. M. Chi, and S. E. Antonarakis. 1991. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 88:5680–4.

    Article  PubMed  CAS  Google Scholar 

  6. Semenza, G. L., and G. L. Wang. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–54.

    PubMed  CAS  Google Scholar 

  7. Wang, G. L., and G. L. Semenza. 1995. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270:1230–7.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, G. L., B. H. Jiang, E. A. Rue, and G. L. Semenza. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92:5510–4.

    Article  PubMed  CAS  Google Scholar 

  9. Hirose, K., M. Morita, M. Ema, J. Mimura, H. Hamada, H. Fujii, Y. Saijo, O. Gotoh, K. Sogawa, and Y. Fujii-Kuriyama. 1996. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol. Cell. Biol. 16:1706–13.

    PubMed  Google Scholar 

  10. Hoffman, E. C, H. Reyes, F. F. Chu, F. Sander, L. H. Conley, B. A. Brooks, and O. Hankinson. 1991. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252:954–8.

    Article  PubMed  CAS  Google Scholar 

  11. Takahata, S., K. Sogawa, A. Kobayashi, M. Ema, J. Mimura, N. Ozaki, and Y. Fujii-Kuriyama. 1998. Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-la, HLF, and clock. Biochem. Biophys. Res. Commun. 248:789–94.

    Article  PubMed  CAS  Google Scholar 

  12. Ema, M., S. Taya, N. Yokotani, K. Sogawa, Y. Matsuda, and Y. Fujii-Kuriyama. 1997. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 94:4273–8.

    Article  PubMed  CAS  Google Scholar 

  13. Flamme, I., T. Frohlich, M. von Reutern, A. Kappel, A. Damert, and W. Risau. 1997. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech. Dev. 63:51–60.

    Article  PubMed  CAS  Google Scholar 

  14. Gu, Y. Z., S. M. Moran, J. B. Hogenesch, L. Wartman, and C. A. Bradfield. 1998. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr. 7:205–13.

    PubMed  CAS  Google Scholar 

  15. Hogenesch, J. B., W. K. Chan, V. H. Jackiw, R. C. Brown, Y. Z. Gu, M. Pray-Grant, G. H. Perdew, and C. A. Bradfield. 1997. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 272:8581–93.

    Article  PubMed  CAS  Google Scholar 

  16. Tian, H., S. L. McKnight, and D. W. Russell. 1997. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11:72–82.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, L. E., J. Gu, M. Schau, and H. F. Bunn. 1998. Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95:7987–92.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang, B. H., E. Rue, G. L. Wang, R. Roe, and G. L. Semenza. 1996. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271:17771–8.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang, B. H., J. Z. Zheng, S. W. Leung, R. Roe, and G. L. Semenza. 1997. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:19253–60.

    Article  PubMed  CAS  Google Scholar 

  20. O’Rourke, J. F., Y. M. Tian, P. J. Ratcliffe, and C. W. Pugh. 1999. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1 alpha. J. Biol. Chem. 274:2060–71.

    Article  PubMed  Google Scholar 

  21. Makino, Y., R. Cao, K. Svensson, G. Bertilsson, M. Asman, H. Tanaka, Y. Cao, A. Berkenstam, and L. Poellinger. 2001. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–4.

    Article  PubMed  CAS  Google Scholar 

  22. Makino, Y., A. Kanopka, W. J. Wilson, H. Tanaka, and L. Poellinger. 2002. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J. Biol. Chem. 277:32405–8.

    Article  PubMed  CAS  Google Scholar 

  23. Jewell, U. R., I. Kvietikova, A. Scheid, C. Bauer, R. H. Wenger, and M. Gassmann. 2001. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 15:1312–4.

    PubMed  CAS  Google Scholar 

  24. Jiang, B. H., G. L. Semenza, C. Bauer, and H. H. Marti. 1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271:C1172–80.

    Google Scholar 

  25. Bruick, R. K., and S. L. McKnight. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–40.

    Article  PubMed  CAS  Google Scholar 

  26. Epstein, A. C, J. M. Gleadle, L. A. McNeill, K. S. Hewitson, J. O’Rourke, D. R. Mole, M. Mukherji, E. Metzen, M. I. Wilson, A. Dhanda, et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.

    Article  PubMed  CAS  Google Scholar 

  27. Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, and W. G. Kaelin, Jr. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–8.

    Article  PubMed  CAS  Google Scholar 

  28. Jaakkola, P., D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, et al. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72.

    Article  PubMed  CAS  Google Scholar 

  29. Masson, N., C. Willam, P. H. Maxwell, C. W. Pugh, and P. J. Ratcliffe. 2001. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20:5197–206.

    Article  PubMed  CAS  Google Scholar 

  30. Maxwell, P. H., M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–5.

    Article  PubMed  CAS  Google Scholar 

  31. Tanimoto, K., Y. Makino, T. Pereira, and L. Poellinger. 2000. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19:4298–309.

    Article  PubMed  CAS  Google Scholar 

  32. Mahon, P. C, K. Hirota, and G. L. Semenza. 2001. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15:2675–86.

    Article  PubMed  CAS  Google Scholar 

  33. Lando, D., D. J. Peet, J. J. Gorman, D. A. Whelan, M. L. Whitelaw, and R. K. Bruick. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16:1466–71.

    Article  PubMed  CAS  Google Scholar 

  34. Hewitson, K. S., L. A. McNeill, M. V. Riordan, Y. M. Tian, A. N. Bullock, R. W. Welford, J. M. Elkins, N. J. Oldham, S. Bhattacharya, J. M. Gleadle, et al. 2002. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277:26351–5.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, G. L., and G. L. Semenza. 1993. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–5.

    PubMed  CAS  Google Scholar 

  36. Jiang, B. H., F. Agani, A. Passaniti, and G. L. Semenza. 1997. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57:5328–35.

    PubMed  CAS  Google Scholar 

  37. Zhong, H., K. Chiles, D. Feldser, E. Laughner, C. Hanrahan, M. M. Georgescu, J. W. Simons, and G. L. Semenza. 2000. Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60:1541–5.

    PubMed  CAS  Google Scholar 

  38. Laughner, E., P. Taghavi, K. Chiles, P. C. Mahon, and G. L. Semenza. 2001. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1 alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21:3995–4004.

    CAS  Google Scholar 

  39. Fukuda, R., K. Hirota, F. Fan, Y. D. Jung, L. M. Ellis, and G. L. Semenza. 2002. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem. 277:38205–11.

    Article  PubMed  CAS  Google Scholar 

  40. Sodhi, A., S. Montaner, V. Patel, M. Zohar, C. Bais, E. A. Mesri, and J. S. Gutkind. 2000. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1 alpha. Cancer Res. 60:4873–80.

    PubMed  CAS  Google Scholar 

  41. Richard, D. E., E. Berra, E. Gothie, D. Roux, and J. Pouyssegur. 1999. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274:32631–7.

    Article  PubMed  Google Scholar 

  42. Wykoff, C. C, C. W. Pugh, P. H. Maxwell, A. L. Harris, and P. J. Ratcliffe. 2000. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 19:6297–305.

    Article  PubMed  CAS  Google Scholar 

  43. Wood, S. M, M. S. Wiesener, K. M. Yeates, N. Okada, C. W. Pugh, P. H. Maxwell, and P. J. Ratcliffe. 1998. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1alpha-subunit (HIF-1alpha). Characterization of hif-1alpha-dependent and -independent hypoxia-inducible gene expression. J. Biol. Chem. 273:8360–8.

    Article  PubMed  CAS  Google Scholar 

  44. Eckhart, A. D., N. Yang, X. Xin, and J. E. Faber. 1997. Characterization of the alpha1B-adrenergic receptor gene promoter region and hypoxia regulatory elements in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 94:9487–92.

    Article  PubMed  CAS  Google Scholar 

  45. Cormier-Regard, S., S. V. Nguyen, and W. C. Claycomb. 1998. Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J. Biol. Chem. 273:17787–92.

    Article  PubMed  CAS  Google Scholar 

  46. Iyer, N. V., L. E. Kotch, F. Agani, S. W. Leung, E. Laughner, R. H. Wenger, M. Gassmann, J. D. Gearhart, A. M. Lawler, A. Y. Yu, et al. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149–62.

    Article  PubMed  CAS  Google Scholar 

  47. Ryan, H. E., J. Lo, and R. S. Johnson. 1998. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 17:3005–15.

    Article  PubMed  CAS  Google Scholar 

  48. Krishnamachary, B., S. Berg-Dixon, B. Kelly, F. Agani, D. Feldser, G. Ferreira, N. Iyer, J. LaRusch, B. Pak, P. Taghavi, et al. 2003. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–43.

    PubMed  CAS  Google Scholar 

  49. Mukhopadhyay, C. K., B. Mazumder, and P. L. Fox. 2000. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275:21048–54.

    Article  PubMed  CAS  Google Scholar 

  50. LeCouter, J., J. Kowalski, J. Foster, P. Hass, Z. Zhang, L. Dillard-Telm, G. Frantz, L. Rangell, L. DeGuzman, G. A. Keller, et al. 2001. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–84.

    Article  PubMed  CAS  Google Scholar 

  51. Hu, J., D. J. Discher, N. H. Bishopric, and K. A. Webster. 1998. Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem. Biophys. Res. Commun. 245:894–9.

    Article  PubMed  CAS  Google Scholar 

  52. Oikawa, M., M. Abe, H. Kurosawa, W. Hida, K. Shirato, and Y. Sato. 2001. Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem. Biophys. Res. Commun. 289:39–43.

    Article  PubMed  CAS  Google Scholar 

  53. Lee, P. J., B. H. Jiang, B. Y. Chin, N. V. Iyer, J. Alam, G. L. Semenza, and A. M. Choi. 1997. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 272:5375–81.

    Article  PubMed  CAS  Google Scholar 

  54. Feldser, D., F. Agani, N. V. Iyer, B. Pak, G. Ferreira, and G. L. Semenza. 1999. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res. 59:3915–8.

    PubMed  CAS  Google Scholar 

  55. Comerford, K. M., T. J. Wallace, J. Karhausen, N. A. Louis, M. C. Montalto, and S. P. Colgan. 2002. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387–94.

    PubMed  CAS  Google Scholar 

  56. Melillo, G., T. Musso, A. Sica, L. S. Taylor, G. W. Cox, and L. Varesio. 1995. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med. 182:1683–93.

    Article  PubMed  CAS  Google Scholar 

  57. Palmer, L. A., G. L. Semenza, M. H. Stoler, and R. A. Johns. 1998. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am. J. Physiol. 274:L212–9.

    Google Scholar 

  58. Sowter, H. M., P. J. Ratcliffe, P. Watson, A. H. Greenberg, and A. L. Harris. 2001. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61:6669–73.

    PubMed  CAS  Google Scholar 

  59. Bruick, R. K. 2000. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA 97:9082–7.

    Article  PubMed  CAS  Google Scholar 

  60. Carmeliet, P., Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, et al. 1998. Role of HIF-lalpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–90.

    Article  PubMed  CAS  Google Scholar 

  61. Bhattacharya, S., C. L. Michels, M. K. Leung, Z. P. Arany, A. L. Kung, and D. M. Livingston. 1999. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev 13:64–75.

    Article  PubMed  CAS  Google Scholar 

  62. Minchenko, A., I. Leshchinsky, I. Opentanova, N. Sang, V. Srinivas, V. Armstead, and J. Caro. 2002. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277:6183–7.

    Article  PubMed  CAS  Google Scholar 

  63. Kietzmann, T., U. Roth, and K. Jungermann. 1999. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 94:4177–85.

    PubMed  CAS  Google Scholar 

  64. Takahashi, Y., S. Takahashi, Y. Shiga, T. Yoshimi, and T. Miura. 2000. Hypoxic induction of prolyl 4-hydroxylase alpha (I) in cultured cells. J. Biol. Chem. 275:14139–46.

    Article  PubMed  CAS  Google Scholar 

  65. Shoshani, T., A. Faerman, I. Mett, E. Zelin, T. Tenne, S. Gorodin, Y. Moshel, S. Elbaz, A. Budanov, A. Chajut, et al. 2002. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell. Biol. 22:2283–93.

    Article  PubMed  CAS  Google Scholar 

  66. Rolfs, A., I. Kvietikova, M. Gassmann, and R. H. Wenger. 1997. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 272:20055–62.

    Article  PubMed  CAS  Google Scholar 

  67. Lok, C. N., and P. Ponka. 1999. Identification of a hypoxia response element in the transferrin receptor gene. J. Biol. Chem. 274:24147–52.

    Article  PubMed  CAS  Google Scholar 

  68. Tacchini, L., L. Bianchi, A. Bernelli-Zazzera, and G. Cairo. 1999. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 274:24142–6.

    Article  PubMed  CAS  Google Scholar 

  69. Caniggia, I., H. Mostachfi, J. Winter, M. Gassmann, S. J. Lye, M. Kuliszewski, and M. Post. 2000. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J. Clin. Invest. 105:577–87.

    Article  PubMed  CAS  Google Scholar 

  70. Gerber, H. P., F. Condorelli, J. Park, and N. Ferrara. 1997. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 272:23659–67.

    Article  PubMed  CAS  Google Scholar 

  71. Brusselmans, K., F. Bono, P. Maxwell, Y. Dor, M. Dewerchin, D. Collen, J. M. Herbert, and P. Carmeliet. 2001. Hypoxia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J. Biol. Chem. 276:39192–6.

    Article  PubMed  CAS  Google Scholar 

  72. Mazure, N. M., C. Chauvet, B. Bois-Joyeux, M. A. Bernard, H. Nacer-Cherif, and J. L. Danan. 2002. Repression of alpha-fetoprotein gene expression under hypoxic conditions in human hepatoma cells: characterization of a negative hypoxia response element that mediates opposite effects of hypoxia inducible factor-1 and c-Myc. Cancer Res 62:1158–65.

    PubMed  CAS  Google Scholar 

  73. Narravula, S., and S. P. Colgan. 2001. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 166:7543–8.

    PubMed  CAS  Google Scholar 

  74. Kotch, L. E., N. V. Iyer, E. Laughner, and G. L. Semenza. 1999. Defective vascularization of HIF-1 alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev. Biol. 209:254–67.

    Article  PubMed  CAS  Google Scholar 

  75. Schipani, E., H. E. Ryan, S. Didrickson, T. Kobayashi, M. Knight, and R. S. Johnson. 2001. Hypoxia in cartilage: HIF-1 alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15:2865–76.

    PubMed  CAS  Google Scholar 

  76. Kojima, H., H. Gu, S. Nomura, C. C. Caldwell, T. Kobata, P. Carmeliet, G. L. Semenza, and M. V. Sitkovsky. 2002. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1 alpha -deficient chimeric mice. Proc. Natl. Acad. Sci. USA 99:2170–4.

    Article  PubMed  CAS  Google Scholar 

  77. Yu, A. Y., L. A. Shimoda, N. V. Iyer, D. L. Huso, X. Sun, R. McWilliams, T. Beaty, J. S. Sham, C. M. Wiener, J. T. Sylvester, et al. 1999. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor lalpha. J. Clin. Invest. 103:691–6.

    Article  PubMed  CAS  Google Scholar 

  78. Shimoda, L. A., D. J. Manalo, J. S. Sham, G. L. Semenza, and J. T. Sylvester. 2001. Partial HIF-1 alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 281.L202–8.

    Google Scholar 

  79. Kline, D. D., Y. J. Peng, D. J. Manalo, G. L. Semenza, and N. R. Prabhakar. 2002. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc. Natl. Acad. Sci. USA 99:821–6.

    Article  PubMed  CAS  Google Scholar 

  80. Carmeliet, P., V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, et al. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–9.

    Article  PubMed  CAS  Google Scholar 

  81. Ferrara, N., K. Carver-Moore, H. Chen, M. Dowd, L. Lu, K. S. O’Shea, L. Powell-Braxton, K. J. Hillan, and M. W. Moore. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–42.

    Article  PubMed  CAS  Google Scholar 

  82. Tian, H., R. E. Hammer, A. M. Matsumoto, D. W. Russell, and S. L. McKnight. 1998. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12:3320–4.

    Article  PubMed  CAS  Google Scholar 

  83. Peng, J., L. Zhang, L. Drysdale, and G. H. Fong. 2000. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA 97:8386–91.

    Article  PubMed  CAS  Google Scholar 

  84. Maltepe, E., J. V. Schmidt, D. Baunoch, C. A. Bradfield, and M. C. Simon. 1997. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–7.

    Article  PubMed  CAS  Google Scholar 

  85. Adelman, D. M, M. Gertsenstein, A. Nagy, M. C. Simon, and E. Maltepe. 2000. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14:3191–203.

    Article  PubMed  CAS  Google Scholar 

  86. Genbacev, O., Y. Zhou, J. W. Ludlow, and S. J. Fisher. 1997. Regulation of human placental development by oxygen tension. Science 277:1669–72.

    Article  PubMed  CAS  Google Scholar 

  87. Rajakumar, A., and K. P. Conrad. 2000. Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. Biol. Reprod. 63:559–69.

    Article  PubMed  CAS  Google Scholar 

  88. Rajakumar, A., K. A. Whitelock, L. A. Weissfeld, A. R. Daftary, N. Markovic, and K. P. Conrad. 2001. Selective overexpression of the hypoxia-inducible transcription factor, HIF-2alpha, in placentas from women with preeclampsia. Biol. Reprod. 64:499–506.

    PubMed  CAS  Google Scholar 

  89. Adelman, D. M., E. Maltepe, and M. C. Simon. 1999. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 13:2478–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Semenza, G.L. (2003). The HIF-1 Family of bHLH-PAS Proteins: Master Regulators of Oxygen Homeostasis. In: Crews, S.T. (eds) PAS Proteins: Regulators and Sensors of Development and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0515-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0515-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5115-3

  • Online ISBN: 978-1-4615-0515-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics