The P160 Family of Steroid Hormone Receptor Coactivators

  • Denise J. Montell


Among PAS domain proteins, the p160 coactivator class may be the most perplexing. Like many PAS domain proteins, members of the p160 family sense the presence of small, lipophilic molecules. And like many eukaryotic PAS domain proteins they regulate transcription. However, p160 coactivators have not been found to bind directly either to small molecules or to DNA; rather they bind to steroid hormone receptors in a ligand-dependent manner and serve as coactivators of transcription. As such, they form a bridge between the hormone receptors, general transcription machinery, and histone acetyl transferases (HATs), which regulate chromatin conformation. These proteins are essential to the organism for normal responses to steroid hormones and for energy homeostasis. Yet to this day, the precise function of the PAS domain within the P160 coactivators remains something of a mystery.


Hormone Receptor Thyroid Hormone Receptor Steroid Receptor Coactivator bHLH Domain Histone Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Onate, S. A., S. Y. Tsai, M. J. Tsai, and B. W. O’Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Leo, C, and J. D. Chen. 2000. The SRC family of nuclear receptor coactivators. Gene 245:1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Voegel, J. J., M. J. Heine, C. Zechel, P. Chambon, and H. Gronemeyer. 1996. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–75.PubMedGoogle Scholar
  4. 4.
    Hong, H., K. Kohli, A. Trivedi, D. L. Johnson, and M. R. Stallcup. 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93:4948–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Anzick, S. L., J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and P. S. Meltzer. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Takeshita, A., G. R. Cardona, N. Koibuchi, C. S. Suen, and W. W. Chin. 1997. TRAM-1, A novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J. Biol. Chem. 272:27629–34.PubMedCrossRefGoogle Scholar
  7. 7.
    McKenna, N. J., and B. W. O’Malley. 2002. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenfeld, M. G., and C. K. Glass. 2001. Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem. 276:36865–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Aranda, A., and A. Pascual. 2001. Nuclear hormone receptors and gene expression. Physiol. Rev. 81:1269–304.PubMedGoogle Scholar
  10. 10.
    Marshall, H., A. Morrison, M. Studer, H. Popped, and R. Krumlauf. 1996. Retinoids and Hox genes. FASEB J. 10:969–78.PubMedGoogle Scholar
  11. 11.
    Kliewer, S. A., H. E. Xu, M. H. Lambert, and T. M. Willson. 2001. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog. Horm. Res. 56:239–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Bai, J., Y. Uehara, and D. J. Montell. 2000. Regulation of Invasive Cell Behavior by Taiman, a Drosophila Protein Related to AIB1, a Steroid Receptor Coactivator Amplified in Breast Cancer. Cell 103:1047–58.PubMedCrossRefGoogle Scholar
  13. 13.
    Montell, D. J. 2001. Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech. Dev. 105:19–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Heery, D. M., E. Kalkhoven, S. Hoare, and M. G. Parker. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Hong, H., B. D. Darimont, H. Ma, L. Yang, K. R. Yamamoto, and M. R. Stallcup. 1999. An additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors. J. Biol. Chem. 274:3496–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Mclnerney, E. M., D. W. Rose, S. E. Flynn, S. Westin, T. M. Mullen, A. Krones, J. Inostroza, J. Torchia, R. T. Nolte, N. Assa-Munt, et al. 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–68.CrossRefGoogle Scholar
  17. 17.
    Nolte, R. T., G. B. Wisely, S. Westin, J. E. Cobb, M. H. Lambert, R. Kurokawa, M. G. Rosenfeld, T. M. Willson, C. K. Glass, and M. V. Milburn. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Westin, S., R. Kurokawa, R. T. Nolte, G. B. Wisely, E. M. Mclnerney, D. W. Rose, M. V. Milburn, M. G. Rosenfeld, and C. K. Glass. 1998. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202.PubMedCrossRefGoogle Scholar
  19. 19.
    Needham, M., S. Raines, J. McPheat, C. Stacey, J. Ellston, S. Hoare, and M. Parker. 2000. Differential interaction of steroid hormone receptors with LXXLL motifs in SRC-la depends on residues flanking the motif. J. Steroid Biochem. Mol Biol. 72:35–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, et al. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and M. G. Rosenfeld. 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Janknecht, R. 2002. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol Histopathol 17:657–68.PubMedGoogle Scholar
  23. 23.
    Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and R. M. Evans. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, S. L., D. H. Dowhan, B. M. Hosking, and G. E. Muscat. 2000. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C- dependent gene expression and skeletal muscle differentiation. Genes Dev. 14:1209–28.PubMedGoogle Scholar
  25. 25.
    Belandia, B., and M. G. Parker. 2000. Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J. Biol. Chem. 275:30801–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Carrero, P., K. Okamoto, P. Coumailleau, S. O’Brien, H. Tanaka, and L. Poellinger. 2000. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor lalpha. Mol Cell Biol. 20:402–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Beischlag, T. V., S. Wang, D. W. Rose, J. Torchia, S. Reisz-Porszasz, K. Muhammad, W. E. Nelson, M. R. Probst, M. G. Rosenfeld, and O. Hankinson. 2002. Recruitment of the NCoA/SRC-l/pl60 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol Cell Biol. 22:4319–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Na, S. Y., S. K. Lee, S. J. Han, H. S. Choi, S. Y. Im, and J. W. Lee. 1998. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J. Biol. Chem. 273:10831–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee, S. K., H. J. Kim, S. Y. Na, T. S. Kim, H. S. Choi, S. Y. Im, and J. W. Lee. 1998. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J. Biol. Chem. 273:16651–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Picard, F., M. Gehin, J. Annicotte, S. Rocchi, M. F. Champy, B. W. O’Malley, P. Chambon, and J. Auwerx. 2002. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111:931–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Xu, J., Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and B. W. O’Malley. 1998. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Nishihara, E., H. Yoshida-Komiya, C. S. Chan, L. Liao, R. L. Davis, B. W. O’Malley, and J. Xu. 2003. SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J. Neurosci. 23:213–22.PubMedGoogle Scholar
  33. 33.
    Xu, J., L. Liao, G. Ning, H. Yoshida-Komiya, C. Deng, and B. W. O’Malley. 2000. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIBl/ACTR/TRAM-l) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. USA 97:6379–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Yao, T. P., B. M. Forman, Z. Jiang, L. Cherbas, J. D. Chen, M. McKeown, P. Cherbas, and R. M. Evans. 1993. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu, T., and S. D. Harrison. 1994. Mosaic analysis using FLP recombinase. Methods in Cell Biology 44:655–681.PubMedCrossRefGoogle Scholar
  36. 36.
    Montell, D. J. 2003. Border-cell migration: the race is on. Nat. Rev. Mol. Cell Biol. 4:13–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Bender, M., F. B. Imam, W. S. Talbot, B. Ganetzky, and D. S. Hogness. 1997. Drosophila ecdysone receptor mutations reveal functional differences among receptor isoforms. Cell 91:777–88.PubMedCrossRefGoogle Scholar
  38. 38.
    Buszczak, M., M. R. Freeman, J. R. Carlson, M. Bender, L. Cooley, and W. A. Segraves. 1999. Ecdysone response genes govern egg chamber development during mid- oogenesis in Drosophila. Development 126:4581–9.PubMedGoogle Scholar
  39. 39.
    Carney, G. E., and M. Bender. 2000. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 154:1203–11.PubMedGoogle Scholar
  40. 40.
    Fisher, B., J. P. Constantino, D. L. Wickerham, C. K. Redmond, M. Kavanah, W. M. Cronin, V. Vogel, A. Robidoux, N. Dimitrov, J. Atkins, et al. 1998. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-l Study. J. Natl. Cancer Inst. 90:1371–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Shang, Y., and M. Brown. 2002. Molecular determinants for the tissue specificity of SERMs. Science 295:2465–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Carapeti, M., R. C. Aguiar, A. E. Watmore, J. M. Goldman, and N. C. Cross. 1999. Consistent fusion of MOZ and TIF2 in AML with inv(8)(p11q13). Cancer Genet. Cytogenet. 113:70–2.PubMedCrossRefGoogle Scholar
  43. 43.
    Zoghbi, H. Y., and H. T. Orr. 2000. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23:217–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Denise J. Montell
    • 1
  1. 1.The Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations