Skip to main content

Abstract

Drosophila bHLH-PAS proteins play important roles in development and physiology. They can be divided into three groups: (i) Tgo and its bHLH-PAS dimerization partners, (ii) circadian rhythms, and (iii) hormone function. The Tgo dimerization group carries-out many developmental roles, and includes: Dysfusion (Dys), Similar (Sima), Single-minded (Sim), Spineless (Ss), and Trachealess (Trh). They are the subject of this chapter (the other Drosophila PAS genes are reviewed in the chapters by Hogenesch and Kay, Montell, and Wilson). Members of the Tgo dimerization group share a number of common features. Foremost, they form DNA-binding heterodimers with Tgo. They are well-conserved between nematodes, insects, and mammals. Each carries-out multiple developmental roles, and some have roles as master regulators of tissue formation. The tissues, cell types, and biological processes whose development and function are influenced by bHLH-PAS proteins are diverse. There is little redundancy or overlap of function, although, there is one example of a bHLH-PAS protein regulating levels of another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonnenfeld, M, M. Ward, G. Nystrom, J. Mosher, S. Stahl, and S. Crews. 1997. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4583–4594.

    Google Scholar 

  2. Ohshiro, T., and K. Saigo. 1997. Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development 124:3975–3986.

    PubMed  CAS  Google Scholar 

  3. Hoffman, E. C, H. Reyes, F. Chu, F. Sander, L. H. Conley, B. A. Brooks, and O. Hankinson. 1991. Cloning of a subunit of the DNA-binding form of the Ah (dioxin) receptor. Science 252:954–958.

    Article  PubMed  CAS  Google Scholar 

  4. Wharton, J., K. A., R. G. Franks, Y. Kasai, and S. T. Crews. 1994. Control of CNS midline transcription by asymmetric E-box elements: similarity to xenobiotic responsive regulation. Development 120:3563–3569.

    CAS  Google Scholar 

  5. Eguchi, H., T. Ikuta, T. Tachibana, Y. Yoneda, and K. Kawajiri. 1997. A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor lp is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J. Biol Chem. 272:17640–17647.

    Article  PubMed  CAS  Google Scholar 

  6. Frigerio, G., M. Burri, D. Bopp, S. Baumgartner, and M. Noll. 1986. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47:735–746.

    Article  PubMed  CAS  Google Scholar 

  7. Ward, M. P., J. T. Mosher, and S. T. Crews. 1998. Regulation of Drosophila bHLH-PAS protein cellular localization during embryogenesis. Development 125:1599–1608.

    PubMed  CAS  Google Scholar 

  8. Zelzer, E., P. Wappner, and B.-Z. Shilo. 1997. The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins. Genes Dev. 11:2079–2089.

    Article  PubMed  CAS  Google Scholar 

  9. Emmons, R. B., D. Duncan, P. A. Estes, P. Kiefel, J. T. Mosher, M. Sonnenfeld, M. P. Ward, I. Duncan, and S. T. Crews. 1999. The Spineless-Aristapedia and Tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 126:3937–3945.

    PubMed  CAS  Google Scholar 

  10. Duncan, D. M., E. A. Burgess, and I. Duncan. 1998. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 12:1290–1303.

    Article  PubMed  CAS  Google Scholar 

  11. Hilliker, A. J., S. H. Clark, W. M. Gelbart, and A. Chovnick. 1981. Cytogenetic analysis of the rosy micro-region, polytene chromosome interval 87D2–4; 87E12–F1, of Drosophila melanogaster. Drosophila Inform. Serv. 56:65–72.

    Google Scholar 

  12. Schalet, A., R. P. Kernaghan, and A. Chovnick. 1964. Structural and phenotypic definition of the rosy cistron in Drosophila melanogaster. Genetics 50:1261–1268.

    PubMed  CAS  Google Scholar 

  13. Thomas, J. B„ S. T. Crews, and C. S. Goodman. 1988. Molecular genetics of the single-minded locus: a gene involved in the development of the Drosophila nervous system. Cell 52:133–141.

    Article  PubMed  CAS  Google Scholar 

  14. Mayer, U., and C. Niisslein-Volhard. 1988. A Group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev. 2:1496–1511.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, S. H., and S. T. Crews. 1993. Influence of Drosophila ventral epidermal development by the CNS midline cells and spitz class genes. Development 118:893–901.

    PubMed  CAS  Google Scholar 

  16. Raz, E., and B. Z. Shilo. 1993. Establishment of ventral cell fates in the Drosophila embryonic ectoderm requires DER, the EGF receptor homolog. Genes Dev. 10:1937–1948.

    Article  Google Scholar 

  17. Bossing, T., and G. M. Technau. 1994. The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development 120:1895–1906.

    PubMed  CAS  Google Scholar 

  18. Schmid, A., A. Chiba, and C. Q. Doe. 1999. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126:4653–4689.

    PubMed  CAS  Google Scholar 

  19. Crews, S. T. 1998. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 12:607–620.

    Article  PubMed  CAS  Google Scholar 

  20. Jacobs, J. R. 2000. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog. Neurobiol. 62:475–508.

    CAS  Google Scholar 

  21. Hummel, T., K. Schimmelpfeng, and C. Klambt. 1999. Commissure formation in the embryonic CNS of Drosophiila I. Identification of the required gene functions. Dev. Biol. 209:381–398.

    CAS  Google Scholar 

  22. Sonnenfeld, M. J., and J. R. Jacobs. 1994. Mesectodermal cell fate analysis in Drosophila midline mutants. Mech. Dev. 46:3–13.

    CAS  Google Scholar 

  23. Panzer, S., D. Weigel, and S. K. Beckendorf. 1992. Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. Development 114:49–57.

    PubMed  CAS  Google Scholar 

  24. Luer, K., J. Urban, C. Klambt, and G. M. Technau. 1997. Induction of identified mesodermal cells by CNS midline progenitors in Drosophila. Development 124:2681–2690.

    PubMed  CAS  Google Scholar 

  25. Zhou, L., H. Xiao, and J. R. Nambu. 1997. CNS midline to mesoderm signaling in Drosophila. Mech. Dev. 67:59–68.

    CAS  Google Scholar 

  26. Page, D. T. 2003. A function for EGF receptor signaling in expanding the developing brain in Drosophila. Curr. Biol. 13:474–82.

    Article  PubMed  CAS  Google Scholar 

  27. Therianos, S., S. Leuzinger, F. Hirth, C. S. Goodman, and H. Reichert. 1995. Embryonic development of the Drosophila brain: formation of commissural and descending pathways. Development 121:3849–60.

    PubMed  CAS  Google Scholar 

  28. Dickson, B. J. 2002. Molecular mechanisms of axon guidance. Science 298:1959–64.

    Article  PubMed  CAS  Google Scholar 

  29. Kidd, T., C. Russell, C. S. Goodman, and G. Tear. 1998. Dosage sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20:25–33.

    Article  PubMed  CAS  Google Scholar 

  30. Lewis, J. O., and S. T. Crews. 1994. Genetic analysis of the Drosophila single-minded gene reveals a CNS influence on muscle patterning. Mech. Dev. 48:81–91.

    CAS  Google Scholar 

  31. Mehta, B., and K. M. Bhat. 2001. Slit signaling promotes the terminal asymmetric division of neural precursor cells in the Drosophila CNS. Development 128:3161–8.

    PubMed  CAS  Google Scholar 

  32. Condron, B. G. 1999. Serotonergic neurons transiently require a midline-derived FGF signal. Neuron 24:531–40.

    Article  PubMed  CAS  Google Scholar 

  33. Menne, T. V., K. Luer, G. M. Technau, and C. Klambt. 1997. CNS midline cells in Drosophila induce the differentiation of lateral neural cells. Development 124:4949–4958.

    PubMed  CAS  Google Scholar 

  34. v Nambu, J. R., J. L. Lewis, K. A. Wharton, and S. T. Crews. 1991. The Drosophila single-minded gene encodes a helix-loop-helix protein which acts as a master regulator of CNS midline development. Cell 67:1157–1167.

    Article  PubMed  CAS  Google Scholar 

  35. Nambu, J. R., R. G. Franks, S. Hu, and S. T. Crews. 1990. The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63:63–75.

    Article  PubMed  CAS  Google Scholar 

  36. Xiao, H., L. A. Hrdlicka, and J. R. Nambu. 1996. Alternate function of the single-minded and rhomboid genes in development of the Drosophila ventral neuroectoderm. Mech. Dev. 58:65–74.

    CAS  Google Scholar 

  37. Chang, Z., B. D. Price, S. Bockheim, M. J. Boedigheimer, R. Smith, and A. Laughon. 1993. Molecular and genetic characterization of the Drosophila tartan gene. Dev. Biol. 160:315–332.

    CAS  Google Scholar 

  38. Mellerick, D. M., and M. Nirenberg. 1995. Dorsal-ventral patterning genes restrict NK-2 homeobox gene expression to the ventral half of the central nervous system of Drosophila embryos. Dev. Biol. 171:306–316.

    CAS  Google Scholar 

  39. Crews, S. T., J. B. Thomas, and C. S. Goodman. 1988. The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 52:143–151.

    Article  PubMed  CAS  Google Scholar 

  40. Kasai, Y., S. Stahl, and S. Crews. 1998. Specification of the Drosophila CNS midline cell lineage: direct control of single-minded transcription by dorsal/ventral patterning genes. Gene Expression 7:171–189.

    PubMed  CAS  Google Scholar 

  41. Pielage, J., G. Steffes, D. C. Lau, B. A. Parente, S. T. Crews, R. Strauss, and C. Klambt. 2002. Novel behavioral and developmental defects associated with Drosophila single-minded. Dev. Biol. 249:283–99.

    CAS  Google Scholar 

  42. Kasai, Y., J. R. Nambu, P. M. Lieberman, and S. T. Crews. 1992. Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene. Proc. Natl. Acad. Sci. USA 89:3414–3418.

    Article  PubMed  CAS  Google Scholar 

  43. Morel, V., and F. Schweisguth. 2000. Repression by suppressor of hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev. 14:377–88.

    PubMed  CAS  Google Scholar 

  44. Cowden, J., and M. Levine. 2002. The Snail repressor positions Notch signaling in the Drosophila embryo. Development 129:1785–93.

    PubMed  CAS  Google Scholar 

  45. Morel, V., R. Le Borgne, and F. Schweisguth. 2003. Snail is required for Delta endocytosis and Notch-dependent activation of single-minded expression. Dev. Genes Evol. 213:65–72.

    CAS  Google Scholar 

  46. McGuire, J., P. Coumailleau, M. L. Whitelaw, J. A. Gustafsson, and L. Poellinger. 1995, The basic helix-loop-helix/PAS factor Sim is associated with hsp90. Implications for regulation by interaction with partner factors. J. Biol. Chem. 270:31353–7.

    Article  PubMed  CAS  Google Scholar 

  47. Ma, Y„ K. Certel, Y. Gao, E. Niemitz, J. Mosher, A. Mukherjee, M. Mutsuddi, N. Huseinovic, S. T. Crews, W. A. Johnson, et al. 2000. Functional interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene. J. Neurosci. 20:4596–605.

    PubMed  CAS  Google Scholar 

  48. Estes, P., J. Mosher, and S. T. Crews. 2001. Drosophila single-minded represses gene transcription by activating the expression of repressive factors. Dev. Biol. 232:157–175.

    CAS  Google Scholar 

  49. Franks, R. G., and S. T. Crews. 1994. Transcriptional activation domains of the Single-minded bHLH protein are required for CNS midline cell development. Mech. Dev. 45:269–277.

    CAS  Google Scholar 

  50. Zelzer, E., and B. Shilo. 2000. Interaction between the bHLH-PAS protein Trachealess and the POU-domain protein Drifter, specifies tracheal cell fates. Mech. Dev. 19:163–173.

    Google Scholar 

  51. McDonald, J. A., S. Holbrook, T. Isshiki, J. Weiss, C. Q. Doe, and D. M. Mellerick. 1998. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev. 12:3603–3612.

    Article  PubMed  CAS  Google Scholar 

  52. Chu, H., C. Parras, K. White, and F. Jimenez. 1998. Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev. 12:3613–3624.

    Article  PubMed  CAS  Google Scholar 

  53. Wharton, J., K. A., and S. T. Crews. 1993. CNS midline enhancers of the Drosophila slit and Toll genes. Mech. Dev. 40:141–154.

    CAS  Google Scholar 

  54. Sanchez-Soriano, N., and S. Russell. 1998. The Drosophila SOX-domain protein Dichaete is required for the development of the central nervous system midline. Development 125:3989–3996.

    Google Scholar 

  55. Strauss, R. 2002. The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12:633–8.

    Article  PubMed  CAS  Google Scholar 

  56. Jurgens, G., E. Wieschaus, C. Nusslein-Volhard, and H. Kluding. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. RouxArch. Dev. Biol. 193:283–295.

    Google Scholar 

  57. Isaac, D. D., and D. J. Andrew. 1996. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10:103–117.

    Article  PubMed  CAS  Google Scholar 

  58. Wilk, R., I. Weizman, L. Glazer, and B.-Z. Shilo. 1996. trachealess encodes a bHLH-PAS protein and is a master regulator gene in the Drosophila tracheal system. Genes Dev. 10:93–102.

    Article  PubMed  CAS  Google Scholar 

  59. Manning, G., and M. A. Krasnow. 1993. Development of the Drosophila tracheal system, p. 609–685. In M. Bate and A. Martinez Arias (ed.), The Development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  60. Younossi-Hartenstein, A., and V. Hartenstein. 1993. The role of the tracheae and musculature during pathfinding of Drosophila embryonic sensory axons. Dev. Biol. 158:430–47.

    CAS  Google Scholar 

  61. Boube, M., M. Llimargas, and J. Casanova. 2000. Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mech. Dev. 91:271–8.

    CAS  Google Scholar 

  62. Jiang, L., and S. T. Crews. 2003. The Drosophila dysfusion bHLH-PAS gene controls tracheal fusion and levels of the Trachealess bHLH-PAS protein. Mol. Cell. Biol. In press.

    Google Scholar 

  63. Jin, J., N. Anthopoulos, B. Wetsch, R. C. Binari, D. D. Isaac, D. J. Andrew, J. R. Woodgett, and A. S. Manoukian. 2001. Regulation of Drosophila tracheal system development by protein kinase B. Dev Cell 1:817–27.

    Article  PubMed  CAS  Google Scholar 

  64. Anderson, M. G., G. L. Perkins, P. Chittick, R. J. Shrigley, and W. A. Johnson. 1995. drifter, a Drosophila POU-domain transcription factor, is required for correct differentiation and migration of tracheal cells and midline glia. Genes Dev. 9:123–137.

    Article  PubMed  CAS  Google Scholar 

  65. de Celis, J. F., M. Llimargas, and J. Casanova. 1995. Ventral veinless, the gene encoding the Cfla transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development 121:3405–16.

    PubMed  Google Scholar 

  66. Kuhnlein, R. P., and R. Schuh. 1996. Dual function of the region-specific homeotic gene spalt during Drosophila tracheal system development. Development 122:2215–23.

    PubMed  CAS  Google Scholar 

  67. Andrew, D. J., K. D. Henderson, and P. Seshaiah. 2000. Salivary gland development in Drosophila melanogaster. Mech. Dev. 92:5–17.

    CAS  Google Scholar 

  68. Bradley, P. L., A. S. Haberman, and D. J. Andrew. 2001. Organ formation in Drosophila: specification and morphogenesis of the salivary gland. Bioessays 23:901–11.

    Article  PubMed  CAS  Google Scholar 

  69. Kuo, Y. M, N. Jones, B. Zhou, S. Panzer, V. Larson, and S. K. Beckendorf. 1996. Salivary duct determination in Drosophila: roles of the EGF receptor signaling pathway and the transcription factors fork head and trachealess. Development 122:1909–17.

    PubMed  CAS  Google Scholar 

  70. Jones, N. A., Y. M. Kuo, Y. H. Sun, and S. K. Beckendorf. 1998. The Drosophila Pax gene eye gone is required for embryonic salivary duct development. Development 125:4163–74.

    PubMed  CAS  Google Scholar 

  71. Matsunami, K., H. Kokubo, K. Ohno, P. Xu, K. Ueno, and Y. Suzuki. 1999. Embryonic silk gland development in Bombyx: molecular cloning and expression of the Bombyx trachealess gene. Dev. Genes Evol. 209:507–14.

    Article  CAS  Google Scholar 

  72. Matsunami, K., H. Kokubo, K. Ohno, and Y. Suzuki. 1998. Expression pattern analysis of SGF-3/POU-M1 in relation to sericin-1 gene expression in the silk gland. Dev. Growth Differ. 40:591–7.

    Article  CAS  Google Scholar 

  73. Weigel, D., H. Bellen, G. Jurgens, and H. Jackie. 1989. Primordium-specific requirement of the homeotic gene fork head in the developing gut of the Drosophila embryo. Wilhelm Roux’s Arch. Dev. Biol. 198:201–201.

    Google Scholar 

  74. Kokubo, H„ S. Takiya, V. Mach, and Y. Suzuki. 1996. Spatial and temporal expression pattern of Bombyx fork head/SGF-l gene in embryogenesis. Dev. Genes Evol. 206:80–85.

    Article  CAS  Google Scholar 

  75. Martin, J. W. 1992. Branchiopoda, Microscopic Anatomy of the Invertebrates, Volume 9: Crustacea. Wiley-Liss Inc.

    Google Scholar 

  76. Mitchell, B., and S. T. Crews. 2002. Expression of the Artemia trachealess gene in the salt gland and epipod. Evol. Dev. 4:1–10.

    Google Scholar 

  77. Chavez, M., C. Landry, S. Loret, M. Muller, J. Figueroa, B. Peers, F. Rentier-Delrue, G. G. Rousseau, M. Krauskopf, and J. A. Martial. 1999. APH-1, a POU homeobox gene expressed in the salt gland of the crustacean Artemia franciscana. Mech. Dev. 87:207–12.

    CAS  Google Scholar 

  78. Lengyel, J. A., and D. D. Iwaki. 2002. It takes guts: the Drosophila hindgut as a model system for organogenesis. Dev. Biol. 243:1–19.

    CAS  Google Scholar 

  79. Samakovlis, C., N. Hacohen, G. Manning, D. Sutherland, K. Guillerhin, and M. A. Krasnow. 1996. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122:1395–1407.

    PubMed  CAS  Google Scholar 

  80. Samakovlis, C., G. Manning, P. Steneberg, N. Hacohen, R. Cantera, and M. A. Krasnow. 1996. Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122:3531–6.

    PubMed  CAS  Google Scholar 

  81. Tanaka-Matakatsu, M., T. Uemura, H. Oda, M. Takeichi, and S. Hayashi. 1996. Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development 122:3697–705.

    PubMed  CAS  Google Scholar 

  82. Gradin, K., J. McGuire, R. H. Wenger, I. Kvietikova, M. L. Whitelaw, R. Toftgard, L. Tora, M. Gassmann, and L. Poellinger. 1996. Functional interference between hypoxia and Dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol. 16:5221–5231.

    PubMed  CAS  Google Scholar 

  83. Woods, S. L., and M. L. Whitelaw. 2002. Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Cross-talk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors. J. Biol. Chem. 277:10236–43.

    Article  PubMed  CAS  Google Scholar 

  84. Nambu, P. A., and J. R. Nambu. 1996. The Drosophila fish-hook gene encodes a HMG domain protein essential for segmentation and CNS development. Development 122:3467–75.

    PubMed  CAS  Google Scholar 

  85. Wang, G. L., B.-H. Jiang, E. Rue, and G. L. Semenza. 1995. Hypoxia-inducible factor 1 is a basic helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci USA 92:5510–5514.

    Article  CAS  Google Scholar 

  86. Lavista-Llanos, S., L. Centanin, M. Irisarri, D. M. Russo, J. M. Gleadle, S. N. Bocca, M. Muzzopappa, P. J. Ratcliffe, and P. Wappner. 2002. Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol Cell. Biol. 22:6842–53.

    CAS  Google Scholar 

  87. Bacon, N. C. M., P. Wappner, J. F. O’Rourke, S. M. Bartlett, B. Shilo, C. W. Pugh, and P. J. Ratcliffe. 1998. Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1α. Bioch. Biophys. Res.Comm. 249:811–816.

    CAS  Google Scholar 

  88. Wingrove, J. A., and P. H. O’Farrell. 1999. Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98:105–14.

    Article  PubMed  CAS  Google Scholar 

  89. Jarecki, J., E. Johnson, and M. A. Krasnow. 1999. Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99:211–20.

    Article  PubMed  CAS  Google Scholar 

  90. Wiggles worth, V. B. 1977. Structural changes in the epidermal cells of Rhodnius during tracheole capture. J. Cell Sci. 26:161–74.

    CAS  Google Scholar 

  91. Adryan, B., H. J. Decker, T. S. Papas, and T. Hsu. 2000. Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19:2803–11.

    Article  PubMed  CAS  Google Scholar 

  92. Bridges, C, and T. H. Morgan. 1923. The third-chromosome group of mutant characters of Drosophila melanogaster. Carnegie Inst. Wash. Publ.:1–25l.

    Google Scholar 

  93. Powell-Coffman, J. A., C. A. Bradfield, and W. B. Wood. 1998. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Nat. Acad. Sci. USA 95:2844–2849.

    Article  PubMed  CAS  Google Scholar 

  94. Butler, R. A., M. L. Kelley, W. H. Powell, M. E. Hahn, and R. J. Van Beneden. 2001. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene 278:223–34.

    Article  PubMed  CAS  Google Scholar 

  95. Dong, P. D., J. S. Dicks, and G. Panganiban. 2002. Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129:1967–74.

    PubMed  CAS  Google Scholar 

  96. Godt, D., J. L. Couderc, S. E. Cramton, and F. A. Laski. 1993. Pattern formation in the limbs of Drosophila: brie a brae is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development 119:799–812.

    PubMed  CAS  Google Scholar 

  97. Chu, J., P. D. Dong, and G. Panganiban. 2002. Limb type-specific regulation of brie a brae contributes to morphological diversity. Development 129:695–704.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crews, S.T. (2003). Drosophila bHLH-PAS Developmental Regulatory Proteins. In: Crews, S.T. (eds) PAS Proteins: Regulators and Sensors of Development and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0515-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0515-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5115-3

  • Online ISBN: 978-1-4615-0515-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics