Skip to main content

bHLH-PAS Proteins in C. Elegans

  • Chapter
  • First Online:
  • 211 Accesses

Abstract

During development and homeostasis, individual cells must divide, differentiate, migrate, adapt to the environment, or die at the appropriate times and places. A key to deciphering the molecular mechanisms by which cells make these decisions is to characterize the regulation and function of the proteins that regulate important changes in gene expression. The family of transcription factors that contain basic-helix-loop-helix and PAS motifs has been shown to control many critical developmental events and to mediate responses to certain environmental stimuli. For example, bHLH-PAS proteins play central roles in the development of specific neural tissues and vasculature, and they are core components of the molecular clock that govern circadian rhythms. bHLH-PAS proteins are also integral to the pathways that sense and respond to hypoxia (low oxygen) and certain xenobiotics (1). Phylogenetic analyses suggest that bHLH-PAS genes arose early in animal development, and in some cases, the functions of individual genes are largely conserved across phyla. This review describes the bHLH-PAS gene family in a genetic model organism, the nematode Caenorhabditis elegans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gu, Y. Z., J. B. Hogenesch, and C. A. Bradfield. 2000. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40:519–61.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor, B. L., and I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479–506.

    PubMed  CAS  Google Scholar 

  3. Pellequer, J.-L., R. Brudler, and E. D. Getzoff. 1999. Biological sensors: more than one way to sense oxygen. Curr. Biol. 9:R416–418.

    Article  PubMed  CAS  Google Scholar 

  4. Sulston, J. E., and H. R. Horvitz. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56:110–156.

    Article  PubMed  CAS  Google Scholar 

  5. Sulston, J. E., E. Schierenberg, J. G. White, and J. N. Thomson. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100:64–119.

    Article  PubMed  CAS  Google Scholar 

  6. Consortium, T. C. e. S. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–8.

    Article  Google Scholar 

  7. Hill, A. A., C. P. Hunter, B. T. Tsung, G. Tucker-Kellogg, and E. L. Brown. 2000. Genomic analysis of gene expression in C. elegans. Science 290:809–812.

    Article  PubMed  CAS  Google Scholar 

  8. Reboul, J., P. Vaglio, N. Tzellas, N. Thierry-Mieg, T. Moore, C. Jackson, T. Shin-i, Y. Kohara, D. Thierry-Mieg, J. Thierry-Mieg, et al. 2001. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nat. Genet. 27:332–6.

    Article  PubMed  CAS  Google Scholar 

  9. Walhout, A. J., S. J. Boulton, and M. Vidal. 2000. Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17:88–94.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, M., J. Ryu, M. Kiraly, K. Duke, V. Reinke, and S. K. Kim. 2001. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Nat. Acad. Set USA 98:218–223.

    Article  CAS  Google Scholar 

  11. Kim, S. K., J. Lund, M. Kiraly, K. Duke, M. Jiang, J. M. Stuart, A. Eizinger, B. N. Wylie, and G. S. Davidson. 2001. A gene expression map for Caenorhabditis elegans. Science 293:2087–2092.

    Article  PubMed  CAS  Google Scholar 

  12. Boulton, S. J., A. Gartner, J. Reboul, P. Vaglio, N. Dyson, D. E. Hill, and M. Vidal. 2002. Combined functional genomic maps of the C. elegans DNA damage response. Science 295:127–131.

    Article  PubMed  CAS  Google Scholar 

  13. Hahn, M. E., S. I. Karchner, M. A. Shapiro, and S. A. Perera. 1997. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc. Natl. Acad. Sci. USA 94:13743–13748.

    Article  PubMed  CAS  Google Scholar 

  14. Powell-Coffman, J. A., C. A. Bradfield, and W. B. Wood. 1998. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. USA 95:2844–2849.

    Article  Google Scholar 

  15. Jiang, H., R. Guo, and J. A. Powell-Coffman. 2001. The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc. Natl. Acad. Sci. USA 98:7916–7921.

    Article  PubMed  CAS  Google Scholar 

  16. Denison, M. S., S. D. Seidel, W. J. Rogers, M. Ziccardi, G. M. Winter, and S. Health-Pagliuso (ed.). 1998. Natural and synthetic ligands for the Ah receptor. Taylor & Francis, Philadelphia, PA.

    Google Scholar 

  17. Schmidt, J. V., and C. A. Bradfield. 1996. Ah receptor signaling pathways. Annu. Rev. Cell Dev. Biol. 12:55–89.

    Article  PubMed  CAS  Google Scholar 

  18. Pirkle, J. L., W. H. Wolfe, D. G. Patterson, L. L. Needham, J. E. Michalek, J. C. Miner, M. R. Peterson, and D. L. Phillips. 1989. Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam Veterans of Operation Ranch Hand. J. Toxicol Environ. Health 27:165–171.

    Article  PubMed  CAS  Google Scholar 

  19. Thorgeirsson, S. S., and D. W. Nebert. 1977. The Ah locus and the metabolism of chemical carcinogens and other foreign compounds. Adv. Cancer Res. 25:149–193.

    Article  PubMed  CAS  Google Scholar 

  20. Denissenko, M. F., A. Pao, M. Tang, and G. P. Pfeifer. 1996. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274:430–432.

    Article  PubMed  CAS  Google Scholar 

  21. Denis, M., S. Cuthill, A. C. Wikstrom, L. Poellinger, and J.-A. Gustafsson. 1988. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem. Biophys. Res. Commun. 155:801–807.

    Article  PubMed  CAS  Google Scholar 

  22. Perdew, G. H. 1988. Association of the Ah receptor with the 90-kDa heat shock protein. J. Biol. Chem. 263:13802–13805.

    PubMed  CAS  Google Scholar 

  23. Carver, L. A., and C. A. Bradfield. 1997. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J. Biol. Chem. 272:11452–11456.

    Article  PubMed  CAS  Google Scholar 

  24. Ma, Q., and J. J. P. Whitlock. 1997. A Novel Cytoplasmic Protein that Interacts with the Ah Receptor, contains Tetratricopeptide Repeat Motifs, and augments the transcriptional Response to 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 272:8878–8884.

    Article  PubMed  CAS  Google Scholar 

  25. Meyer, B. K., J. R. Petrulis, and G. H. Perdew. 2000. Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones 5:243–254.

    Article  PubMed  CAS  Google Scholar 

  26. Probst, M. R., S. Reisz-Porszasz, R. V. Agbunag, M. S. Ong, and O. Hankinson. 1993. Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Mol Pharmacol. 44:511–518.

    PubMed  CAS  Google Scholar 

  27. Reyes, H., S. Reisz-Porszasz, and O. Hankinson. 1992. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256:1193–1195.

    Article  PubMed  CAS  Google Scholar 

  28. Epstein, A. C, J. M. Gleadle, L. A. McNeill, K. S. Hewitson, J. O'Rourke, D. R. Mole, M. Mukherji, E. Metzen, M. I. Wilson, A. Dhanda, et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.

    Article  PubMed  CAS  Google Scholar 

  29. Padilla, P. A., T. G. Nystul, R. A. Zager, A. C. Johnson, and M. B. Roth. 2002. Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. Mol Biol. Cell 13:1473–1483.

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi, A., K. Numayama-Tsuruta, K. Sogawa, and Y. Fujii-Kuriyama. 1997. CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J. Biochem. (Tokyo) 122:703–710.

    Article  CAS  Google Scholar 

  31. Kumar, M. B., and G. H. Perdew. 1999. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr. 8:273–286.

    PubMed  CAS  Google Scholar 

  32. Nguyen, T. A., D. Hoivik, J. E. Lee, and S. Safe. 1999. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch. Biochem. Biophys. 367:250–257.

    Article  PubMed  CAS  Google Scholar 

  33. Beischlag, T. V., S. Wang, D. W. Rose, J. Torchia, S. Reisz-Porszasz, K. Muhammad, W. E. Nelson, M. R. Probst, M. G. Rosenfeld, and O. Hankinson. 2002. Recruitment of the NCoA/SRC-l/pl60 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol. Cell. Biol. 22:4319–4333.

    Article  PubMed  CAS  Google Scholar 

  34. Tohkin, M., M. Fukuhara, G. Elizondo, S. Tomita, and F. J. Gonzalez. 2000. Aryl hydrocarbon receptor is required for p300-mediated induction of DNA synthesis by adenovirus ElA. Mol. Pharmacol. 58:845–851.

    PubMed  CAS  Google Scholar 

  35. Hankinson, O. 1995. The Aryl hydrocarbon receptor complex. Ann. Rev. Biochem. 35:307–40.

    CAS  Google Scholar 

  36. Whitlock, J. P., Jr. 1999. Induction of cytochrome P4501A1. Annu. Rev. Pharmacol. Toxicol. 39:103–125.

    Article  PubMed  CAS  Google Scholar 

  37. Fernandez-Salguero, P., T. Pineau, D. M. Hilbert, T. McPhail, S. S. Lee, S. Kimura, D. W. Nebert, S. Rudikoff, J. M. Ward, and F. J. Gonzalez. 1995. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726.

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt, J. V., G. H.-T. Su, J. K. Reddy, M. C. Simon, and C. A. Bradfield. 1996. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA 93:6731–6736.

    Article  PubMed  CAS  Google Scholar 

  39. Mimura, J., K. Yamashita, K. Nakamura, M. Morita, T. N. Takagi, K. Nakao, M. Ema, K. Sogawa, M. Yasuda, M. Katsuki, et al. 1997. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2.

    Google Scholar 

  40. Lahvis, G. P., S. L. Lindell, R. S. Thomas, R. S. McCuskey, C. Murphy, E. Glover, M. Bentz, J. Southard, and C. A. Bradfield. 2000. Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl. Acad. Sci. USA 97:10442–10447.

    Article  PubMed  CAS  Google Scholar 

  41. Abbott, B. D., L. S. Birnbaum, and G. H. Perdew. 1995. Developmental expression of two members of a new class of transcription factors: I. Expression of aryl hydrocarbon receptor in the C57BL/6N mouse embryo. Dev. Dyn. 204:133–43.

    Article  PubMed  CAS  Google Scholar 

  42. Jain, S., E. Maltepe, M. M. Lu, C. Simon, and C. A. Bradfield. 1998. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73:117–123.

    Article  PubMed  CAS  Google Scholar 

  43. Petersen, S. L., M. A. Curran, S. A. Marconi, C. D. Carpenter, L. S. Lubbers, and M. D. McAbee. 2000. Distribution of mRNAs encoding the arylhydrocarbon receptor, arylhydrocarbon receptor nuclear translocator, and arylhydrocarbon receptor nuclear translocator-2 in the rat brain and brainstem. J. Comp. Neurol. 427:428–439.

    Article  PubMed  CAS  Google Scholar 

  44. Shimizu, Y., Y. Nakatsuru, M. Ichinose, Y. Takahashi, H. Kume, J. Mimura, Y. Fujii-Kuriyama, and T. Ishikawa. 2000. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 97:779–782.

    Article  PubMed  CAS  Google Scholar 

  45. Matikainen, T., G. I. Perez, A. Jurisicova, J. K. Pru, J. J. Schlezinger, H. Y. Ryu, J. Laine, T. Sakai, S. J. Korsmeyer, R. F. Casper, et al. 2001. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat. Genet. 28:355–360.

    Article  PubMed  CAS  Google Scholar 

  46. Vorderstrasse, B. A., L. B. Steppan, A. E. Silverstone, and N. I. Kerkvliet. 2001. Aryl hydrocarbon receptor-deficient mice generate normal immune responses to model antigens and are resistant to TCDD-induced immune suppression. Toxicol. Appl Pharmacol. 171:157–164.

    Article  PubMed  CAS  Google Scholar 

  47. Bell, D. R., and A. Poland. 2000. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J. Biol. Chem. 275:36407–14.

    Article  PubMed  CAS  Google Scholar 

  48. Butler, R. A., M. L. Kelley, W. H. Powell, M. E. Hahn, and R. J. Van Beneden. 2001. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene 278:223–234.

    Article  PubMed  CAS  Google Scholar 

  49. Sonnenfeld, M., M. Ward, G. Nystrom, J. Mosher, S. Stahl, and S. Crews. 1997. The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124:4583–4594.

    Google Scholar 

  50. Duncan, D. M., E. A. Burgess, and I. Duncan. 1998. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 12:1290–1303.

    Article  PubMed  CAS  Google Scholar 

  51. Emmons, R. B., D. Duncan, P. A. Estes, P. Kiefel, J. T. Mosher, M. Sonnenfeld, M. P. Ward, I. Duncan, and S. T. Crews. 1999. The Spineless-Aristapedia and Tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 126:3937–3945.

    CAS  Google Scholar 

  52. Ward, M. P., J. T. Mosher, and S. T. Crews. 1998. Regulation of Drosophila bHLH-PAS protein cellular localization during embryogenesis. Development 125:1599–1608.

    PubMed  CAS  Google Scholar 

  53. Crews, S. T., and C.-M. Fan. 1999. Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Curr. Opin. Genet. Dev. 9:580–587.

    Article  PubMed  CAS  Google Scholar 

  54. Semenza, G. L. 2000. HIF-1 and human disease: one highly involved factor. Genes Dev. 14:1983–1991.

    PubMed  CAS  Google Scholar 

  55. Wenger, R. H. 2002. Cellular adaptation to hypoxia: 02-sensing protein hydroxylases, hypoxia-inducible transcription factors, and 02-regulated gene expression. FASEB J. 16:1151–1162.

    Article  PubMed  CAS  Google Scholar 

  56. Maxwell, P. H., M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275.

    Article  PubMed  CAS  Google Scholar 

  57. Kamura, T., S. Sato, K. Iwai, M. Czyzyk-Krzeska, R. C. Conaway, and J. W. Conaway. 2000. Activation of HIF1 alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Set USA 97.

    Google Scholar 

  58. Ohh, M., C. W. Park, M. Ivan, M. A. Hoffman, T. Y. Kim, L. E. Huang, N. Pavletich, V. Chau, and W. G. Kaelin. 2000. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2:423–427.

    Article  PubMed  CAS  Google Scholar 

  59. Tanimoto, K., Y. Makino, T. Pereira, and L. Poellinger. 2000. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19:4298–4309.

    Article  PubMed  CAS  Google Scholar 

  60. Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, and W. G. Kaelin, Jr. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468.

    Article  PubMed  CAS  Google Scholar 

  61. Jaakkola, P., D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, et al. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72.

    Article  PubMed  CAS  Google Scholar 

  62. Trent, C, N. Tsung, and H. R. Horvitz. 1983. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647.

    PubMed  CAS  Google Scholar 

  63. Gallagher, L. A., and C. Manoil. 2001. Pseudomonas aeruginosa PAOl Kills Caenorhabditis elegans by Cyanide Poisoning. J. Bacteriol. 183:6207–6214.

    Article  PubMed  CAS  Google Scholar 

  64. Aravind, L., and E. V. Koonin. 2001. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol. 2.RESEARCH0007.

    Google Scholar 

  65. Darby, C, C. L. Cosma, J. H. Thomas, and C. Manoil. 1999. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96:15202–15207.

    Article  PubMed  CAS  Google Scholar 

  66. Stein, L., P. Sternberg, R. Durbin, J. Thierry-Mieg, and J. Spieth. 2001. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29:82–86.

    Article  PubMed  CAS  Google Scholar 

  67. Van Voorhies, W. A., and S. Ward. 2000. Broad oxygen tolerance in the nematode Caenorhabditis elegans. J. Exp. Biol. 203 Pt 16:2467–2478.

    Google Scholar 

  68. Scott, B. A., M. S. Avidan, and C. M. Crowder. 2002. Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296:2388–2391.

    Article  PubMed  CAS  Google Scholar 

  69. Riddle, D. L., and P. S. Albert (ed.). 1997. Genetic and environmental regulation of dauer larva development. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  70. Mimura, J., M. Ema, K. Sogawa, and Y. Fujii-Kuriyama. 1999. Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev. 13:20–25.

    Article  PubMed  CAS  Google Scholar 

  71. Makino, Y., R. Cao, K. Svensson, G. Bertilsson, M. Asman, H. Tanaka, Y. Cao, A. Berkenstam, and L. Poellinger. 2001. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powell-Coffman, J.A. (2003). bHLH-PAS Proteins in C. Elegans . In: Crews, S.T. (eds) PAS Proteins: Regulators and Sensors of Development and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0515-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0515-0_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5115-3

  • Online ISBN: 978-1-4615-0515-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics