Skip to main content

Signal Transduction in Prokaryotic PAS Domains

  • Chapter

Abstract

With the progress in genome sequencing and in silico analysis, there has been a rapid increase in identified PAS domains in the SMART database (Simple Modular Architecture Research Tool <http://smart.embl-heidelberg.de/>). At the time of writing (September, 2002) more than 2000 non-redundant PAS domains are listed in SMART, making the PAS domain one of the most common domains found in sensory proteins. Of the known PAS domains, sixty percent are in prokaryotes where they are ubiquitous in both eubacteria and archaea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhulin, I. B., B. L. Taylor, and R. Dixon. 1997. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22:331–3.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor, B. L., and I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. MolBiol Rev. 63:479–506.

    CAS  Google Scholar 

  3. Pellequer, J. L., K. A. Wager-Smith, S. A. Kay, and E. D. Getzoff. 1998. Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc. Natl. Acad. Sci. USA 95:5884–90.

    Article  PubMed  CAS  Google Scholar 

  4. Ponting, C. P., and L. Aravind. 1997. PAS: a multifunctional domain family comes to light. Curr. Biol. 7:R674–7.

    Article  Google Scholar 

  5. Borgstahl, G. E., D. R. Williams, and E. D. Getzoff. 1995. 1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore. Biochemistry 34:6278–87.

    Article  PubMed  CAS  Google Scholar 

  6. Gong, W., B. Hao, S. S. Mansy, G. Gonzalez, M. A. Gilles-Gonzalez, and M. K. Chan. 1998. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl. Acad. Sci. USA 95:15177–82.

    Article  PubMed  CAS  Google Scholar 

  7. Hill, S., S. Austin, T. Eydmann, T. Jones, and R. Dixon. 1996. Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. USA 93:2143–8.

    Article  PubMed  CAS  Google Scholar 

  8. Schmitz, R. A. 1997. NifL of Klebsiella pneumoniae carries an N-terminally bound FAD cofactor, which is not directly required for the inhibitory function of NifL. FEMS Microbiol. Lett. 157:313–8.

    Article  PubMed  CAS  Google Scholar 

  9. Bibikov, S. I., R. Biran, K. E. Rudd, and J. S. Parkinson. 1997. A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179:4075–9.

    CAS  Google Scholar 

  10. Bibikov, S. I., L. A. Barnes, Y. Gitin, and J. S. Parkinson. 2000. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc. Natl. Acad. Sci. USA 97:5830–5.

    Article  PubMed  CAS  Google Scholar 

  11. Rebbapragada, A., M. S. Johnson, G. P. Harding, A. J. Zuccarelli, H. M. Fletcher, I. B. Zhulin, and B. L. Taylor. 1997. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl. Acad. Sci. USA 94:10541–6.

    Article  PubMed  CAS  Google Scholar 

  12. Repik, A., A. Rebbapragada, M. S. Johnson, J. O. Haznedar, I. B. Zhulin, and B. L. Taylor. 2000. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol Microbiol. 36:806–16.

    Article  PubMed  CAS  Google Scholar 

  13. Christie, J. M., M. Salomon, K. Nozue, M. Wada, and W. R. Briggs. 1999. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nphl): binding sites for the chromophore flavin mononucleotide. Proc. Natl. Acad. Sci. USA 96:8779–83.

    Article  PubMed  CAS  Google Scholar 

  14. Crosson, S„ and K. Moffat. 2001. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc. Natl. Acad. Sci. USA 98:2995–3000.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor, B. L., I. B. Zhulin, and M. S. Johnson. 1999. Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev. Microbiol. 53:103–28.

    Article  PubMed  CAS  Google Scholar 

  16. Taylor, B. L., A. Rebbapragada, and M. S. Johnson. 2001. The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli. Antioxid. Redox Signal 3:867–79.

    Article  PubMed  CAS  Google Scholar 

  17. Harold, F. M., and P. C. Maloney. 1996. Energy transduction by ion currents, p. 283-306. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, second ed, vol. 1. ASM Press, Washington, D.C.

    Google Scholar 

  18. Hyung, S., J. Saw, S. Hou, R. W. Larsen, K. J. Watts, M. S. Johnson, M. A. Zimmer, G. W. Ordal, B. L. Taylor, and M. Alam. 2002. Aerotactic responses in bacteria to photoreleased oxygen. FEMS Microbiol. Lett. 217:237–242.

    Article  Google Scholar 

  19. Johnson, M. S., and B. L. Taylor. 1993. Comparison of methods for specific depletion of ATP in Salmonella typhimurium. Appl. Environ. Microbiol. 59:3509–12.

    PubMed  CAS  Google Scholar 

  20. Taylor, B. L., and I. B. Zhulin. 1998. In search of higher energy: metabolism-dependent behaviour in bacteria. Mol. Microbiol. 28:683–90.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor, B. L. 1983. Role of proton motive force in sensory transduction in bacteria. Annu. Rev. Microbiol. 37:551–73.

    Article  PubMed  CAS  Google Scholar 

  22. Taylor, B. L., J. B. Miller, H. M. Warrick, and D. E. Koshland, Jr. 1979. Electron acceptor taxis and blue light effect on bacterial chemotaxis. J. Bacteriol. 140:567–73.

    PubMed  CAS  Google Scholar 

  23. Bespalov, V. A., I. B. Zhulin, and B. L. Taylor. 1996. Behavioral responses of Escherichia coli to changes in redox potential. Proc. Natl. Acad. Sci. USA 93:10084–9.

    Article  PubMed  CAS  Google Scholar 

  24. Zhulin, I. B., E. H. Rowsell, M. S. Johnson, and B. L. Taylor. 1997. Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 179:3196–201.

    PubMed  CAS  Google Scholar 

  25. Alexandre, G., S. E. Greer, and I. B. Zhulin. 2000. Energy taxis is the dominant behavior in Azospirillum brasilense. J. Bacteriol. 182:6042–8.

    Article  PubMed  CAS  Google Scholar 

  26. Zhulin, I. B., V. A. Bespalov, M. S. Johnson, and B. L. Taylor. 1996. Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 178:5199–204.

    PubMed  CAS  Google Scholar 

  27. Zhulin, I. B., M. S. Johnson, and B. L. Taylor. 1997. How do bacteria avoid high oxygen concentrations? Biosci. Rep. 17:335–42.

    Article  PubMed  CAS  Google Scholar 

  28. Miyatake, H., M. Mukai, S. Y. Park, S. Adachi, K. Tamura, H. Nakamura, K. Nakamura, T. Tsuchiya, T. Iizuka, and Y. Shiro. 2000. Sensory mechanism of oxygen sensor FixL from Rhizobium meliloti: crystallographic, mutagenesis and resonance Raman spectroscopic studies. J. Mol. Biol. 301:415–31.

    Article  PubMed  CAS  Google Scholar 

  29. Morais Cabral, J. H., A. Lee, S. L. Cohen, B. T. Chait, M. Li, and R. Mackinnon. 1998. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95:649–55.

    Article  PubMed  CAS  Google Scholar 

  30. Amezcua, C, S. Harper, J. Rutter, and K. Gardner. 2002. Structure and interactions of PAS Kinase N-terminal PAS domain. Model for intramolecular kinase regulation. Structure (Camb) 10:1349.

    Article  CAS  Google Scholar 

  31. Rutter, J., C. H. Michnoff, S. M. Harper, K. H. Gardner, and S. L. McKnight. 2001. PAS kinase: an evolutionarily conserved PAS domain-regulated serine/threonine kinase. Proc. Natl. Acad. ScL USA 98:8991–6.

    Article  CAS  Google Scholar 

  32. Rutter, J., B. Probst, and S. McKnight. 2002. Coordinate Regulation of Sugar Flux and Translation by PAS Kinase. Cell 111:17.

    Article  PubMed  CAS  Google Scholar 

  33. Zhulin, I. B., and B. L. Taylor. 1998. Correlation of PAS domains with electron transport-associated proteins in completely sequenced microbial genomes. Mol. Microbiol. 29:1522–3.

    PubMed  CAS  Google Scholar 

  34. Stock, J. B., A. J. Ninfa, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450–90.

    PubMed  CAS  Google Scholar 

  35. Eisenbach, M. 1996. Control of bacterial chemotaxis. Mol. Microbiol. 20:903–10.

    Article  PubMed  CAS  Google Scholar 

  36. Barak, R., and M. Eisenbach. 1996. Regulation of interaction between signaling protein CheY and flagellar motor during bacterial chemotaxis. Curr. Top. Cell. Regul. 34:137–58.

    Article  PubMed  CAS  Google Scholar 

  37. Grimshaw, C. E., S. Huang, C. G. Hanstein, M. A. Strauch, D. Burbulys, L. Wang, J. A. Hoch, and J. M. Whiteley. 1998. Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:1365–75.

    Article  PubMed  CAS  Google Scholar 

  38. Stephenson, K„ and J. A. Hoch. 2001. PAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis. Proc. Natl. Acad. ScL USA 98:15251–6.

    Article  CAS  Google Scholar 

  39. Appleby, J. L., J. S. Parkinson, and R. B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–8.

    Article  PubMed  CAS  Google Scholar 

  40. Uhl, M. A., and J. F. Miller. 1996. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J. Biol. Chem. 271:33176–80.

    Article  PubMed  CAS  Google Scholar 

  41. Uhl, M. A., and J. F. Miller. 1996. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J. 15:1028–36.

    PubMed  CAS  Google Scholar 

  42. Matsushika, A., and T. Mizuno. 2000. Characterization of three putative sub-domains in the signal-input domain of the ArcB hybrid sensor in Escherichia coli. J. Biochem. (Tokyo) 127:855–60.

    Article  CAS  Google Scholar 

  43. Jorgensen, B. B. 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298:543–61.

    Article  PubMed  CAS  Google Scholar 

  44. Canfield, D. E., and D. J. Des Marais. 1991. Aerobic sulfate reduction in microbial mats. Science 251:1471–3.

    Article  PubMed  CAS  Google Scholar 

  45. Donaghay, P. L., Rimes, H. M., Sieburth, J. McN. 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch. Hydrobiol. Beih. Ergebn. Limnol. 36:97–108.

    Google Scholar 

  46. Zhulin, I. B., Taylor, B. L. 1995. Chemotaxis in plant-associated bacteria: the search for the ecological niche, p. 451–459. In I. Fendrik (ed.), Azospirillum VI and Related Microorganisms. Springer-Verlag, Berlin.

    Google Scholar 

  47. Aravind, L., and C. P. Ponting. 1999. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol. Lett. 176:111–6.

    Article  PubMed  CAS  Google Scholar 

  48. Ma, Q. 2001. HAMP domain and signaling mechanism of the Aer protein. Ph.D dissertation. Loma Linda University, Loma Linda, CA.

    Google Scholar 

  49. Maddock, J. R., and L. Shapiro. 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–23.

    Article  PubMed  CAS  Google Scholar 

  50. Lamanna, A. C, J. E. Gestwicki, L. E. Strong, S. L, Borchardt, R. M. Owen, and L. L. Kiessling. 2002. Conserved amplification of chemotactic responses through chemoreceptor interactions. J. Bacteriol 184:4981–7.

    Article  PubMed  CAS  Google Scholar 

  51. Ames, P., C. A. Studdert, R. H. Reiser, and J. S. Parkinson. 2002. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:7060–5.

    Article  PubMed  CAS  Google Scholar 

  52. Kim, K. K., H. Yokota, and S. H. Kim. 1999. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–92.

    Article  PubMed  CAS  Google Scholar 

  53. Bren, A., and M. Eisenbach. 2000. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol 182:6865–73.

    Article  PubMed  CAS  Google Scholar 

  54. Bren, A., and M. Eisenbach. 2001. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J. Mol. Biol 312:699–709.

    Article  PubMed  CAS  Google Scholar 

  55. Iuchi, S., and E. C. Lin. 1988. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl Acad. Sci. USA 85:1888–92.

    Article  PubMed  CAS  Google Scholar 

  56. Iuchi, S., D. C. Cameron, and E. C. Lin. 1989. A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J. Bacteriol 171:868–73.

    PubMed  CAS  Google Scholar 

  57. Lynch, A. S., Lin, E. C. C. 1996. Responses to molecular oxygen, p. 1526–1538. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, second ed, vol. 1. ASM Press, Washington, D.C.

    Google Scholar 

  58. Kwon, O., D. Georgellis, A. S. Lynch, D. Boyd, and E. C. Lin. 2000. The ArcB sensor kinase of Escherichia coli: genetic exploration of the transmembrane region. J. Bacteriol 182:2960–6.

    Article  PubMed  CAS  Google Scholar 

  59. Georgellis, D., O. Kwon, and E. C. Lin. 2001. Quinones as the redox signal for the Arc two-component system of bacteria. Science 292:2314–6.

    Article  PubMed  CAS  Google Scholar 

  60. Iuchi, S., and E. C. Lin. 1992. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J. Bacteriol. 174:3972–80.

    CAS  Google Scholar 

  61. Iuchi, S. 1993. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J. Biol Chem. 268:23972–80.

    CAS  Google Scholar 

  62. Pruss, B. M., J. W. Campbell, T. K. Van Dyk, C. Zhu, Y. Kogan, and P. Matsumura. 2003. FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J. Bacteriol. 185:534–543.

    Article  PubMed  CAS  Google Scholar 

  63. Gomelsky, M., I. M. Home, H. J. Lee, J. M. Pemberton, A. G. McEwan, and S. Kaplan. 2000. Domain structure, oligomeric state, and mutational analysis of PpsR, the Rhodobacter sphaeroides repressor of photosystem gene expression. J. Bacteriol. 182:2253–61.

    Article  PubMed  CAS  Google Scholar 

  64. Penfold, R. J., and J. M. Pemberton. 1994. Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J. Bacteriol. 176:2869–76.

    PubMed  CAS  Google Scholar 

  65. Ponnampalam, S. N., J. J. Buggy, and C. E. Bauer. 1995. Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J. Bacteriol. 177:2990–7.

    PubMed  CAS  Google Scholar 

  66. Gomelsky, M., and S. Kaplan. 1997. Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 179:128–34.

    PubMed  CAS  Google Scholar 

  67. Mksuda, S., and C. Bauer. 2002. AppA Is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613.

    Article  Google Scholar 

  68. Oh, J. I., and S. Kaplan. 2000. Redox signaling: globalization of gene expression. EMBOJ. 19:4237–47.

    Article  CAS  Google Scholar 

  69. Braatsch, S., M. Gomelsky, S. Kuphal, and G. Klug. 2002. A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Mol Microbiol 45:827–36.

    Article  PubMed  CAS  Google Scholar 

  70. Delgado-Nixon, V. M., G. Gonzalez, and M. A. Gilles-Gonzalez. 2000. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39:2685–91.

    Article  PubMed  CAS  Google Scholar 

  71. Gonzalez, G., E. M. Dioum, C. M. Bertolucci, T. Tomita, M. Ikeda-Saito, M. R. Cheesman, N. J. Watmough, and M. A. Gilles-Gonzalez. 2002. Nature of the displaceable heme-axial residue in the EcDos protein, a heme-based sensor from Escherichia coli. Biochemistry 41:8414–21.

    Article  PubMed  CAS  Google Scholar 

  72. Quail, P. H. 1991. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25:389–409.

    Article  PubMed  CAS  Google Scholar 

  73. Kehoe, D. M., and A. R. Grossman. 1996. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–12.

    Article  PubMed  CAS  Google Scholar 

  74. Hughes, J., T. Lamparter, F. Mittmann, E. Hartmann, W. Gartner, A. Wilde, and T. Borner. 1997. A prokaryotic phytochrome. Nature 386:663.

    Article  PubMed  CAS  Google Scholar 

  75. Yeh, K. C., S. H. Wu, J. T. Murphy, and J. C. Lagarias. 1997. A cyanobacterial phytochrome two-component light sensory system. Science 277:1505–8.

    Article  PubMed  CAS  Google Scholar 

  76. Elich, T. D., and J. Chory. 1997. Phytochrome: if it looks and smells like a histidine kinase, is it a histidine kinase? Cell 91:713–6.

    Article  PubMed  CAS  Google Scholar 

  77. Davis, S. J., A. V. Vener, and R. D. Vierstra. 1999. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–20.

    Article  PubMed  CAS  Google Scholar 

  78. Bhoo, S. H., S. J. Davis, J. Walker, B. Karniol, and R. D. Vierstra. 2001. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414:776–9.

    Article  PubMed  CAS  Google Scholar 

  79. Jiang, Z., L. R. Swem, B. G. Rushing, S. Devanathan, G. Tollin, and C. E. Bauer. 1999. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285:406–9.

    Article  PubMed  CAS  Google Scholar 

  80. Giraud, E., J. Fardoux, N. Fourrier, L. Hannibal, B. Genty, P. Bouyer, B. Dreyfus, and A. Vermeglio. 2002. Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417:202–5.

    Article  PubMed  CAS  Google Scholar 

  81. Salomon, M, J. M. Christie, E. Knieb, U. Lempert, and W. R. Briggs. 2000. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–10.

    Article  PubMed  CAS  Google Scholar 

  82. Salomon, M„ W. Eisenreich, H. Durr, E. Schleicher, E. Knieb, V. Massey, W. Rudiger, F. Muller, A. Bacher, and G. Richter. 2001. An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc. Natl. Acad. Sci. USA 98:12357–61.

    Article  PubMed  CAS  Google Scholar 

  83. Losi, A., E. Polverini, B. Quest, and W. Gartner. 2002. First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys. J. 82:2627–34.

    Article  PubMed  CAS  Google Scholar 

  84. Meyer, T. E. 1985. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim. Biophys. Acta. 806:175–83.

    Article  CAS  Google Scholar 

  85. Meyer, T. E„ E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26:418–23.

    Article  PubMed  CAS  Google Scholar 

  86. Baca, M., G. E. Borgstahl, M. Boissinot, P. M. Burke, D. R. Williams, K. A. Slater, and E. D. Getzoff. 1994. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry. Biochemistry 33:14369–77.

    Article  PubMed  CAS  Google Scholar 

  87. Hoff, W. D., P. Dux, K. Hard, B. Devreese, I. M. Nugteren-Roodzant, W. Crielaard, R. Boelens, R. Kaptein, J. van Beeumen, and K. J. Hellingwerf. 1994. Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry. Biochemistry 33:13959–62.

    Article  PubMed  CAS  Google Scholar 

  88. Kim, M., R. A. Mathies, W. D. Hoff, and K. J. Hellingwerf. 1995. Resonance Raman evidence that the thioester-linked 4-hydroxycinnamyl chromophore of photoactive yellow protein is deprotonated. Biochemistry 34:12669–72.

    Article  PubMed  CAS  Google Scholar 

  89. Groenhof, G., M. F. Lensink, H. J. Berendsen, and A. E. Mark. 2002. Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes. Proteins 48:212–9.

    Article  PubMed  CAS  Google Scholar 

  90. Groenhof, G., M. F. Lensink, H. J. Berendsen, J. G. Snijders, and A. E. Mark. 2002. Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore. Proteins 48:202–11.

    Article  PubMed  CAS  Google Scholar 

  91. Stragier, P., and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297–41.

    Article  CAS  Google Scholar 

  92. Fabret, C, V. A. Feher, and J. A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181:1975–83.

    PubMed  CAS  Google Scholar 

  93. Perego, M., S. P. Cole, D. Burbulys, K. Trach, and J. A. Hoch. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171:6187–96.

    PubMed  CAS  Google Scholar 

  94. Burbulys, D., K. A. Trach, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–52.

    Article  PubMed  CAS  Google Scholar 

  95. Perego, M., and J. A. Hoch. 1996. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet. 12:97–101.

    Article  PubMed  CAS  Google Scholar 

  96. Wang, L., C. Fabret, K. Kanamaru, K. Stephenson, V. Dartois, M. Perego, and J. A. Hoch. 2001. Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis. J. Bacteriol. 183:2795–802.

    Article  PubMed  CAS  Google Scholar 

  97. LeDeaux, J. R., N. Yu, and A. D. Grossman. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177:861–3.

    PubMed  CAS  Google Scholar 

  98. LeDeaux, J. R., and A. D. Grossman. 1995. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol 177:166–75.

    PubMed  CAS  Google Scholar 

  99. Kobayashi, K., K. Shoji, T. Shimizu, K. Nakano, T. Sato, and Y. Kobayashi. 1995. Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J. Bacteriol 177:176–82.

    PubMed  CAS  Google Scholar 

  100. Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–86.

    PubMed  CAS  Google Scholar 

  101. Gilles-Gonzalez, M. A., G. Gonzalez, M. F. Perutz, L. Kiger, M. C. Marden, and C. Poyart. 1994. Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry 33:8067–73.

    Article  PubMed  CAS  Google Scholar 

  102. Perutz, M. F., M. Paoli, and A. M. Lesk. 1999. FixL, a haemoglobin that acts as an oxygen sensor: signalling mechanism and structural basis of its homology with PAS domains. Chem. Biol. 6:R291–7.

    Article  PubMed  CAS  Google Scholar 

  103. Dixon, R. 1998. The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Arch. Microbiol 169:371–80.

    Article  PubMed  CAS  Google Scholar 

  104. Rudnick, P., C. Kunz, M. K. Gunatilaka, E. R. Hines, and C. Kennedy. 2002. Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. J. Bacteriol 184:812–20.

    Article  PubMed  CAS  Google Scholar 

  105. Blanco, G„ M. Drummond, P. Woodley, and C. Kennedy. 1993. Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Mol Microbiol. 9:869–79.

    Article  PubMed  CAS  Google Scholar 

  106. Gropp, F., and M. C. Betlach. 1994. The bat gene of Halobacterium halobium encodes a trans-acting oxygen inducibility factor. Proc. Natl. Acad. Set USA 91:5475–9.

    Article  CAS  Google Scholar 

  107. Woodley, P., and M. Drummond. 1994. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes. Mol. Microbiol. 13:619–26.

    Article  PubMed  CAS  Google Scholar 

  108. Narberhaus, F., H. S. Lee, R. A. Schmitz, L. He, and S. Kustu. 1995. The C-terminal domain of NifL is sufficient to inhibit NifA activity. J. Bacteriol. 177:5078–87.

    PubMed  CAS  Google Scholar 

  109. Money, T., T. Jones, R. Dixon, and S. Austin. 1999. Isolation and properties of the complex between the enhancer binding protein NIFA and the sensor NIFL. J. Bacteriol 181:4461–8.

    PubMed  CAS  Google Scholar 

  110. Soderback, E., F. Reyes-Ramirez, T. Eydmann, S. Austin, S. Hill, and R. Dixon. 1998. The redox- and fixed nitrogen-responsive regulatory protein NIFL from Azotobacter vinelandii comprises discrete flavin and nucleotide-binding domains. Mol. Microbiol. 28:179–92.

    Article  PubMed  CAS  Google Scholar 

  111. Macheroux, P., S. Hill, S. Austin, T. Eydmann, T. Jones, S. O. Kim, R. Poole, and R. Dixon. 1998. Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator. Biochem. J. 332 (Pt 2):413–9.

    PubMed  CAS  Google Scholar 

  112. Klopprogge, K., R. Grabbe, M. Hoppert, and R. A. Schmitz. 2002. Membrane association of Klebsiella pneumoniae NifL is affected by molecular oxygen and combined nitrogen. Arch. Microbiol. 177:223–34.

    Article  PubMed  CAS  Google Scholar 

  113. Schmitz, R. A., K. Klopprogge, and R. Grabbe. 2002. Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol. Biotechnol. 4:235–42.

    PubMed  CAS  Google Scholar 

  114. Ninfa, A. J., Atkinson, M. R., Komberov, E. S., Feng, J., Ninfa, E. G. 1995. Control of nitrogen assimilation by the NRI-Nrll two-component system of enteric bacteria, p. 67–88. In J. A. Hoch, Silhavy, T. J. (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  115. He, L., E. Soupene, and S. Kustu. 1997. NtrC is required for control of Klebsiella pneumoniae NifL activity. J. Bacteriol. 179:7446–55.

    PubMed  CAS  Google Scholar 

  116. Zimmer, D. P., E. Soupene, H. L. Lee, V. F. Wendisch, A. B. Khodursky, B. J. Peter, R. A. Bender, and S. Kustu. 2000. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc. Natl. Acad. Set USA 97:14674–9.

    Article  CAS  Google Scholar 

  117. Jiang, P., M. R. Atkinson, C. Srisawat, Q. Sun, and A. J. Ninfa. 2000. Functional dissection of the dimerization and enzymatic activities of Escherichia coli nitrogen regulator II and their regulation by the PII protein. Biochemistry 39:13433–49.

    Article  PubMed  CAS  Google Scholar 

  118. Arcondeguy, T., R. Jack, and M. Merrick. 2001. P(H) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105.

    Article  PubMed  CAS  Google Scholar 

  119. Jiang, P., and A. J. Ninfa. 1999. Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J. Bacteriol. 181:1906–11.

    PubMed  CAS  Google Scholar 

  120. Pioszak, A. A., P. Jiang, and A. J. Ninfa. 2000. The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module. Biochemistry 39:13450–61.

    Article  PubMed  CAS  Google Scholar 

  121. Ninfa, E. G., M. R. Atkinson, E. S. Kamberov, and A. J. Ninfa. 1993. Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J. Bacteriol. 175:7024–32.

    PubMed  CAS  Google Scholar 

  122. Martinez-Argudo, I., J. Martin-Nieto, P. Salinas, R. Maldonado, M. Drummond, and A. Contreras. 2001. Two-hybrid analysis of domain interactions involving NtrB and NtrC two-component regulators. Mol. Microbiol. 40:169–78.

    Article  PubMed  CAS  Google Scholar 

  123. Kramer, G., and V. Weiss. 1999. Functional dissection of the transmitter module of the histidine kinase NtrB in Escherichia coli. Proc. Natl. Acad. Sci. USA 96:604–9.

    Article  PubMed  CAS  Google Scholar 

  124. Ishida, M. L., M. C. Assumpcao, H. B. Machado, E. M. Benelli, E. M. Souza, and F. O. Pedrosa. 2002. Identification and characterization of the two-component NtrY/NtrX regulatory system in Azospirillum brasilense. Braz. J. Med. Biol. Res. 35:651–61.

    Article  PubMed  CAS  Google Scholar 

  125. Pawlowski, K., U. Klosse, and F. J. de Bruijn. 1991. Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol. Gen. Genet. 231:124–38.

    Article  PubMed  CAS  Google Scholar 

  126. Arico, B., J. F. Miller, C. Roy, S. Stibitz, D. Monack, S. Falkow, R. Gross, and R. Rappuoli. 1989. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. USA 86:6671.

    Article  PubMed  CAS  Google Scholar 

  127. Stibitz, S., and M. S. Yang. 1991. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J. Bacteriol. 173:4288–96.

    PubMed  CAS  Google Scholar 

  128. Karimova, G., J. Bellalou, and A. Ullmann. 1996. Phosphorylation-dependent binding of BvgA to the upstream region of the cyaA gene of Bordetella pertussis. Mol. Microbiol. 20:489–96.

    Article  CAS  Google Scholar 

  129. Steffen, P., S. Goyard, and A. Ullmann. 1996. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J. 15:102–9.

    PubMed  CAS  Google Scholar 

  130. Mattoo, S., A. K. Foreman-Wykert, P. A. Cotter, and J. F. Miller. 2001. Mechanisms of Bordetella pathogenesis. Front. Biosci. 6:E 168–86.

    Article  Google Scholar 

  131. Kinnear, S. M., R. R. Marques, and N. H. Carbonetti. 2001. Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect. Immun. 69:1983–93.

    Article  PubMed  CAS  Google Scholar 

  132. Uhl, M. A., and J. F. Miller. 1994. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc. Natl. Acad. Sci. USA 91:1163–7.

    Article  PubMed  CAS  Google Scholar 

  133. Beier, D., H. Deppisch, and R. Gross. 1996. Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis. Mol. Gen. Genet. 252:169–76.

    Article  PubMed  CAS  Google Scholar 

  134. Weiss, A. A., and S. Falkow. 1984. Genetic analysis of phase change in Bordetella pertussis. Infect. Immun. 43:263–9.

    PubMed  CAS  Google Scholar 

  135. Miller, J. F., S. A. Johnson, W. J. Black, D. T. Beattie, J. J. Mekalanos, and S. Falkow. 1992. Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J. Bacteriol. 174:970–9.

    PubMed  CAS  Google Scholar 

  136. Manetti, R., B. Arico, R. Rappuoli, and V. Scarlato. 1994. Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene 150:123–7.

    Article  PubMed  CAS  Google Scholar 

  137. Bock, A., and R. Gross. 2002. The unorthodox histidine kinases BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur. J. Biochem. 269:3479–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, B.L., Johnson, M.S., Watts, K.J. (2003). Signal Transduction in Prokaryotic PAS Domains. In: Crews, S.T. (eds) PAS Proteins: Regulators and Sensors of Development and Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0515-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0515-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5115-3

  • Online ISBN: 978-1-4615-0515-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics