Advertisement

PAS Proteins in the Mammalian Circadian Clock

  • John B. Hogenesch
  • Steve A. Kay

Abstract

Many aspects of physiology are regulated in a temporal manner by an internal clock that anticipates the time of day and directs physiological processes accordingly (1). In mammals, cellular processes such as cholesterol and heme biosynthesis, temperature and hormonal rhythms, and the sleep wake cycle are all “timed” by the circadian clock to occur at appropriate time periods in the absence of environmental cues (2). Remarkably, in mammals these processes are controlled by a small nucleus in the hypothalamus, the suprachiasmatic nucleus (SCN), which harbors the “master” oscillator, or core clock. This master oscillator, in turn, synchronizes peripheral clocks that regulate physiology in a tissue- and time-dependent manner. This timekeeping mechanism is composed of three essential elements: (i) a light input pathway that allows for resetting with a changing environment, (i) a core oscillator that keeps track of time, and (iii) the output of the clock that dictates circadian controlled physiology (Figure 1). The past thirty years of study has elucidated many components of the core circadian oscillator, including a basic model for clock mechanism in flies and mammals (3). In fact, the first clues to mammalian circadian mechanism began with “P” in PAS and the study of the fruit fly.

Keywords

Circadian Clock Casein Kinase Suprachiasmatic Nucleus Circadian Oscillator Core Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunlap, J. C. 1999. Molecular bases for circadian clocks. Cell 96:271–90.PubMedGoogle Scholar
  2. 2.
    Reppert, S. M., and D. R. Weaver. 2002. Coordination of circadian timing in mammals. Nature 418:935–41.PubMedGoogle Scholar
  3. 3.
    Young, M. W., and S. A. Kay. 2001. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702–15.PubMedGoogle Scholar
  4. 4.
    Pittendrigh, C. S. 1967. Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc. Natl. Acad. Sci. USA 58:1762–7.PubMedGoogle Scholar
  5. 5.
    Konopka, R. J., and S. Benzer. 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68:2112–6.PubMedGoogle Scholar
  6. 6.
    Reddy, P., W. A. Zehring, D. A. Wheeler, V. Pirrotta, C. Hadfield, J. C. Hall, and M. Rosbash. 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38:701–10.PubMedGoogle Scholar
  7. 7.
    Bargiello, T. A., F. R. Jackson, and M. W. Young. 1984. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312:752–4.PubMedGoogle Scholar
  8. 8.
    Huang, Z. J., I. Edery, and M. Rosbash. 1993. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259–62.PubMedGoogle Scholar
  9. 9.
    Crosthwaite, S. K., J. C. Dunlap, and J. J. Loros. 1997. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–9.PubMedGoogle Scholar
  10. 10.
    Gu, Y. Z., J. B. Hogenesch, and C. A. Bradfield. 2000. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40:519–61.PubMedGoogle Scholar
  11. 11.
    Burbach, K. M., A. Poland, and C. A. Bradfield. 1992. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl. Acad. Sci. USA 89:8185–9.PubMedGoogle Scholar
  12. 12.
    Dolwick, K. M., H. I. Swanson, and C. A. Bradfield. 1993. In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition. Proc. Natl. Acad. Sci. USA 90:8566–70.PubMedGoogle Scholar
  13. 13.
    Hardin, P. E., J. C. Hall, and M. Rosbash. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–40.PubMedGoogle Scholar
  14. 14.
    Zwiebel, L. J., P. E. Hardin, J. C. Hall, and M. Rosbash. 1991. Circadian oscillations in protein and mRNA levels of the period gene of Drosophila melanogaster. Biochem. Soc. Trans. 19:533–7.PubMedGoogle Scholar
  15. 15.
    Baylies, M. K., T. A. Bargiello, F. R. Jackson, and M. W. Young. 1987. Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326:390–2.PubMedGoogle Scholar
  16. 16.
    Gekakis, N., L. Saez, A. M. Delahaye-Brown, M. P. Myers, A. Sehgal, M. W. Young, and C. J. Weitz. 1995. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270:811–5.PubMedGoogle Scholar
  17. 17.
    Myers, M. P., K. Wager-Smith, C. S. Wesley, M. W. Young, and A. Sehgal. 1995. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270:805–8.PubMedGoogle Scholar
  18. 18.
    Zeng, H., Z. Qian, M. P. Myers, and M. Rosbash. 1996. A light-entrainment mechanism for the Drosophila circadian clock. Nature 380:129–35.PubMedGoogle Scholar
  19. 19.
    Price, J. L., J. Blau, A. Rothenfluh, M. Abodeely, B. Kloss, and M. W. Young. 1998. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95.PubMedGoogle Scholar
  20. 20.
    Hao, H., D. L. Allen, and P. E. Hardin. 1997. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell. Biol. 17:3687–93.PubMedGoogle Scholar
  21. 21.
    Onate, S. A., S. Y. Tsai, M. J. Tsai, and B. W. O’Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–7.PubMedGoogle Scholar
  22. 22.
    Sun, Z. S., U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele, and C. C. Lee. 1997. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–11.PubMedGoogle Scholar
  23. 23.
    Tei, H., H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–6.PubMedGoogle Scholar
  24. 24.
    Albrecht, U., Z. S. Sun, G. Eichele, and C. C. Lee. 1997. A differential response of two putative mammalian circadian regulators, mperl and mper2, to light. Cell 91:1055–64.PubMedGoogle Scholar
  25. 25.
    Shearman, L. P., M. J. Zylka, D. R. Weaver, L. F. Kolakowski, Jr., and S. M. Reppert. 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–9.PubMedGoogle Scholar
  26. 26.
    Zylka, M. J., L. P. Shearman, D. R. Weaver, and S. M. Reppert. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–10.PubMedGoogle Scholar
  27. 27.
    Vitaterna, M. H., D. P. King, A. M. Chang, J. M. Komhauser, P. L. Lowrey, J. D. McDonald, W. F. Dove, L. H. Pinto, F. W. Turek, and J. S. Takahashi. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–25.PubMedGoogle Scholar
  28. 28.
    Antoch, M. P., E. J. Song, A. M. Chang, M. H. Vitaterna, Y. Zhao, L. D. Wilsbacher, A. M. Sangoram, D. P. King, L. H. Pinto, and J. S. Takahashi. 1997. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89:655–67.PubMedGoogle Scholar
  29. 29.
    King, D. P., Y. Zhao, A. M. Sangoram, L. D. Wilsbacher, M. Tanaka, M. P. Antoch, T. D. Steeves, M. H. Vitaterna, J. M. Komhauser, P. L. Lowrey, et al. 1997. Positional cloning of the mouse circadian clock gene. Cell 89:641–53.PubMedGoogle Scholar
  30. 30.
    King, D. P., M. H. Vitaterna, A. M. Chang, W. F. Dove, L. H. Pinto, F. W. Turek, and J. S. Takahashi. 1997. The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics 146:1049–60.PubMedGoogle Scholar
  31. 31.
    Gekakis, N., D. Staknis, H. B. Nguyen, F. C. Davis, L. D. Wilsbacher, D. P. King, J. S. Takahashi, and C. J. Weitz. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–9.PubMedGoogle Scholar
  32. 32.
    Hogenesch, J. B., Y. Z. Gu, S. Jain, and C. A. Bradfield. 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95:5474–9.PubMedGoogle Scholar
  33. 33.
    Hogenesch, J. B., W. K. Chan, V. H. Jackiw, R. C. Brown, Y. Z. Gu, M. Pray-Grant, G. H. Perdew, and C. A. Bradfield. 1997. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem. 272:8581–93.PubMedGoogle Scholar
  34. 34.
    Ikeda, M., and M. Nomura. 1997. cDNA cloning and tissue-specific expression of a novel basic helix-loop- helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem. Biophys. Res. Commun. 233:258–64.PubMedGoogle Scholar
  35. 35.
    Bunger, M. K., L. D. Wilsbacher, S. M. Moran, C. Clendenin, L. A. Radcliffe, J. B. Hogenesch, M. C. Simon, J. S. Takahashi, and C. A. Bradfield. 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–17.PubMedGoogle Scholar
  36. 36.
    Rutila, J. E., V. Suri, M. Le, W. V. So, M. Rosbash, and J. C. Hall. 1998. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:805–14.PubMedGoogle Scholar
  37. 37.
    Allada, R., N. E. White, W. V. So, J. C. Hall, and M. Rosbash. 1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804.PubMedGoogle Scholar
  38. 38.
    Darlington, T. K., K. Wager-Smith, M. F. Ceriani, D. Staknis, N. Gekakis, T. D. Steeves, C. J. Weitz, J. S. Takahashi, and S. A. Kay. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599–603.PubMedGoogle Scholar
  39. 39.
    Zheng, B., U. Albrecht, K. Kaasik, M. Sage, W. Lu, S. Vaishnav, Q. Li, Z. S. Sun, G. Eichele, A. Bradley, et al. 2001. Nonredundant roles of the mPerl and mPer2 genes in the mammalian circadian clock. Cell 105:683–94.PubMedGoogle Scholar
  40. 40.
    Miyamoto, Y., and A. Sancar. 1998. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl Acad. Sci. USA 95:6097–102.PubMedGoogle Scholar
  41. 41.
    Zhong, H. H., A. S. Resnick, M. Straume, and C. Robertson McClung. 1997. Effects of synergistic signaling by phytochrome A and cryptochromel on circadian clock-regulated catalase expression. Plant Cell 9:947–55.PubMedGoogle Scholar
  42. 42.
    Somers, D. E., P. F. Devlin, and S. A. Kay. 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–90.PubMedGoogle Scholar
  43. 43.
    Stanewsky, R., M. Kaneko, P. Emery, B. Beretta, K. Wager-Smith, S. A. Kay, M. Rosbash, and J. C. Hall. 1998. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–92.PubMedGoogle Scholar
  44. 44.
    Ceriani, M. F., T. K. Darlington, D. Staknis, P. Mas, A. A. Petti, C. J. Weitz, and S. A. Kay. 1999. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–6.PubMedGoogle Scholar
  45. 45.
    van der Horst, G. T., M. Muijtjens, K. Kobayashi, R. Takano, S. Kanno, M. Takao, J. de Wit, A. Verkerk, A. P. Eker, D. van Leenen, et al. 1999. Mammalian Cryl and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–30.PubMedGoogle Scholar
  46. 46.
    Kume, K., M. J. Zylka, S. Sriram, L. P. Shearman, D. R. Weaver, X. Jin, E. S. Maywood, M. H. Hastings, and S. M. Reppert. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205.PubMedGoogle Scholar
  47. 47.
    Griffin, E. A., Jr., D. Staknis, and C. J. Weitz. 1999. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286:768–71.PubMedGoogle Scholar
  48. 48.
    Honma, S., M. Ikeda, H. Abe, Y. Tanahashi, M. Namihira, K. Honma, and M. Nomura. 1998. Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun. 250:83–7.PubMedGoogle Scholar
  49. 49.
    Shearman, L. P., S. Sriram, D. R. Weaver, E. S. Maywood, I. Chaves, B. Zheng, K. Kume, C. C. Lee, G. T. van der Horst, M. H. Hastings, et al. 2000. Interacting molecular loops in the mammalian circadian clock. Science 288:1013–9.PubMedGoogle Scholar
  50. 50.
    Oishi, K., H. Fukui, and N. Ishida. 2000. Rhythmic expression of BMAL1 mRNA is altered in Clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Biochem. Biophys. Res. Commun. 268:164–71.PubMedGoogle Scholar
  51. 51.
    Yu, W., M. Nomura, and M. Ikeda. 2002. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Commun. 290:933–41.PubMedGoogle Scholar
  52. 52.
    Lee, C, J. P. Etchegaray, F. R. Cagampang, A. S. Loudon, and S. M. Reppert. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–67.PubMedGoogle Scholar
  53. 53.
    Akashi, M., Y. Tsuchiya, T. Yoshino, and E. Nishida. 2002. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol. Cell. Biol. 22:1693–703.PubMedGoogle Scholar
  54. 54.
    Eide, E. J., E. L. Vielhaber, W. A. Hinz, and D. M. Virshup. 2002. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 277:17248–54.PubMedGoogle Scholar
  55. 55.
    Takahata, S., T. Ozaki, J. Mimura, Y. Kikuchi, K. Sogawa, and Y. Fujii-Kuriyama. 2000. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 5:739–47.PubMedGoogle Scholar
  56. 56.
    Etchegaray, J. P., C. Lee, P. A. Wade, and S. M. Reppert. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–82.PubMedGoogle Scholar
  57. 57.
    Martinek, S., S. Inonog, A. S. Manoukian, and M. W. Young. 2001. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105:769–79.PubMedGoogle Scholar
  58. 58.
    Lin, J. M., V. L. Kilman, K. Keegan, B. Paddock, M. Emery-Le, M. Rosbash, and R. Allada. 2002. A role for casein kinase 2alpha in the Drosophila circadian clock. Nature 420:816–20.PubMedGoogle Scholar
  59. 59.
    Blau, J., and M. W. Young. 1999. Cycling vrille expression is required for a functional Drosophila clock. Cell 99:661–71.PubMedGoogle Scholar
  60. 60.
    Glossop, N. R., J. H. Houl, H. Zheng, F. S. Ng, S. M. Dudek, and P. E. Hardin. 2003. VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator. Neuron 37:249–61.PubMedGoogle Scholar
  61. 61.
    Cyran, S. A., A. M. Buchsbaum, K. L. Reddy, M. C. Lin, N. R. Glossop, P. E. Hardin, M. W. Young, R. V. Storti, and J. Blau. 2003. vrille, Pdpl, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112:329–41.PubMedGoogle Scholar
  62. 62.
    Lowrey, P. L., K. Shimomura, M. P. Antoch, S. Yamazaki, P. D. Zemenides, M. R. Ralph, M. Menaker, and J. S. Takahashi. 2000. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–92.PubMedGoogle Scholar
  63. 63.
    Ralph, M. R., and M. Menaker. 1988. A mutation of the circadian system in golden hamsters. Science 241:1225–7.PubMedGoogle Scholar
  64. 64.
    Toh, K. L., C. R. Jones, Y. He, E. J. Eide, W. A. Hinz, D. M. Virshup, L. J. Ptacek, and Y. H. Fu. 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–3.PubMedGoogle Scholar
  65. 65.
    McNamara, P., S. P. Seo, R. D. Rudic, A. Sehgal, D. Chakravarti, and G. A. FitzGerald. 2001. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–89.PubMedGoogle Scholar
  66. 66.
    Le Minh, N., F. Damiola, F. Tronche, G. Schutz, and U. Schibler. 2001. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20:7128–36.PubMedGoogle Scholar
  67. 67.
    Preitner, N., F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U. Albrecht, and U. Schibler. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–60.PubMedGoogle Scholar
  68. 68.
    Lucas, R. J., M. S. Freedman, D. Lupi, M. Munoz, Z. K. David-Gray, and R. G. Foster. 2001. Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice. Behav. Brain Res. 125:97–102.PubMedGoogle Scholar
  69. 69.
    Rusak, B. 1979. Neural mechanisms for entrainment and generation of mammalian circadian rhythms. Fed. Proc. 38:2589–95.PubMedGoogle Scholar
  70. 70.
    McGuire, R. A., W. M. Rand, and R. J. Wurtman. 1973. Entrainment of the body temperature rhythm in rats: effect of color and intensity of environmental light. Science 181:956–7.PubMedGoogle Scholar
  71. 71.
    Meijer, J. H., E. A. van der Zee, and M. Dietz. 1988. Glutamate phase shifts circadian activity rhythms in hamsters. Neurosci. Lett. 86:177–83.PubMedGoogle Scholar
  72. 72.
    Hannibal, J., J. M. Ding, D. Chen, J. Fahrenkrug, P. J. Larsen, M. U. Gillette, and J. D. Mikkelsen. 1997. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17:2637–44.PubMedGoogle Scholar
  73. 73.
    Chen, D., G. F. Buchanan, J. M. Ding, J. Hannibal, and M. U. Gillette. 1999. Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 96:13468–73.PubMedGoogle Scholar
  74. 74.
    Hannibal, J., F. Jamen, H. S. Nielsen, L. Journot, P. Brabet, and J. Fahrenkrug. 2001. Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J. Neurosci. 21:4883–90.PubMedGoogle Scholar
  75. 75.
    Shen, S., C. Spratt, W. J. Sheward, I. Kallo, K. West, C. F. Morrison, C. W. Coen, H. M. Marston, and A. J. Harmar. 2000. Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc. Natl Acad. Sci. USA 97:11575–80.PubMedGoogle Scholar
  76. 76.
    Harmar, A. J., H. M. Marston, S. Shen, C. Spratt, K. M. West, W. J. Sheward, C. F. Morrison, J. R. Dorin, H. D. Piggins, J. C. Reubi, et al. 2002. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508.PubMedGoogle Scholar
  77. 77.
    Freedman, M. S., R. J. Lucas, B. Soni, M. von Schantz, M. Munoz, Z. David-Gray, and R. Foster. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–4.PubMedGoogle Scholar
  78. 78.
    Menaker, M. 2003. Circadian rhythms. Circadian photoreception. Science 299:213–4.PubMedGoogle Scholar
  79. 79.
    Ruby, N. F., T. J. Brennan, X. Xie, V. Cao, P. Franken, H. C. Heller, and B. F. O’Hara. 2002. Role of melanopsin in circadian responses to light. Science 298:2211–3.PubMedGoogle Scholar
  80. 80.
    Panda, S., T. K. Sato, A. M. Castrucci, M. D. Rollag, W. J. DeGrip, J. B. Hogenesch, I. Provencio, and S. A. Kay. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–6.PubMedGoogle Scholar
  81. 81.
    Lucas, R. J., S. Hattar, M. Takao, D. M. Berson, R. G. Foster, and K. W. Yau. 2003. Diminished pupillary light reflex at high irradiances in melanopsin- knockout mice. Science 299:245–7.PubMedGoogle Scholar
  82. 82.
    Rusak, B., H. A. Robertson, W. Wisden, and S. P. Hunt. 1990. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–40.PubMedGoogle Scholar
  83. 83.
    Kornhauser, J. M., D. E. Nelson, K. E. Mayo, and J. S. Takahashi. 1990. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5:127–34.PubMedGoogle Scholar
  84. 84.
    Lin, J. T., J. M. Kornhauser, N. P. Singh, K. E. Mayo, and J. S. Takahashi. 1997. Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Brain Res. Mol. Brain Res. 46:303–10.PubMedGoogle Scholar
  85. 85.
    Wollnik, F., W. Brysch, E. Uhlmann, F. Gillardon, R. Bravo, M. Zimmermann, K. H. Schlingensiepen, and T. Herdegen. 1995. Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci. 7:388–93.PubMedGoogle Scholar
  86. 86.
    Honrado, G. L, R. S. Johnson, D. A. Golombek, B. M. Spiegelman, V. E. Papaioannou, and M. R. Ralph. 1996. The circadian system of c-fos deficient mice. J. Comp. Physiol. [A] 178:563–70.Google Scholar
  87. 87.
    Gau, D., T. Lemberger, C. von Gall, O. Kretz, N. Le Minh, P. Gass, W. Schmid, U. Schibler, H. W. Korf, and G. Schutz. 2002. Phosphorylation of CREB Serl42 regulates light-induced phase shifts of the circadian clock. Neuron 34:245–53.PubMedGoogle Scholar
  88. 88.
    Plautz, J. D., M. Kaneko, J. C. Hall, and S. A. Kay. 1997. Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–5.PubMedGoogle Scholar
  89. 89.
    Yamazaki, S., R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–5.PubMedGoogle Scholar
  90. 90.
    Balsalobre, A., F. Damiola, and U. Schibler. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–37.PubMedGoogle Scholar
  91. 91.
    Balsalobre, A., S. A. Brown, L. Marcacci, F. Tronche, C. Kellendonk, H. M. Reichardt, G. Schutz, and U. Schibler. 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–7.PubMedGoogle Scholar
  92. 92.
    Stokkan, K. A., S. Yamazaki, H. Tei, Y. Sakaki, and M. Menaker. 2001. Entrainment of the circadian clock in the liver by feeding. Science 291:490–3.PubMedGoogle Scholar
  93. 93.
    Zhou, Y. D., M. Barnard, H. Tian, X. Li, H. Z. Ring, U. Francke, J. Shelton, J. Richardson, D. W. Russell, and S. L. McKnight. 1997. Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc. Natl. Acad. Sci. USA 94:713–8.PubMedGoogle Scholar
  94. 94.
    Hogenesch, J. B., Y. Z. Gu, S. M. Moran, K. Shimomura, L. A. Radcliffe, J. S. Takahashi, and C. A. Bradfield. 2000. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J. Neurosci. 20:RC83.Google Scholar
  95. 95.
    Reick, M., J. A. Garcia, C. Dudley, and S. L. McKnight. 2001. NPAS2: an analog of clock operative in the mammalian forebrain. Science 293:506–9.PubMedGoogle Scholar
  96. 96.
    Rutter, J., M. Reick, L. C. Wu, and S. L. McKnight. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–4.PubMedGoogle Scholar
  97. 97.
    Dioum, E. M, J. Rutter, J. R. Tuckerman, G. Gonzalez, M. A. Gilles-Gonzalez, and S. L. McKnight. 2002. NPAS2: a gas-responsive transcription factor. Science 298:2385–7.PubMedGoogle Scholar
  98. 98.
    Morris, M. E., N. Viswanathan, S. Kuhlman, F. C. Davis, and C. J. Weitz. 1998. A screen for genes induced in the suprachiasmatic nucleus by light. Science 279:1544–7.PubMedGoogle Scholar
  99. 99.
    Kornmann, B., N. Preitner, D. Rifat, F. Fleury-Olela, and U. Schibler. 2001. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res. 29:E51–1.Google Scholar
  100. 100.
    Sato, T. K., S. Panda, S. A. Kay, and J. B. Hogenesch. 2003. DNA arrays: applications and implications for circadian biology. J. Biol. Rhythms 18:96–105.PubMedGoogle Scholar
  101. 101.
    Shimomura, K., S. S. Low-Zeddies, D. P. King, T. D. Steeves, A. Whiteley, J. Kushla, P. D. Zemenides, A. Lin, M. H. Vitaterna, G. A. Churchill, et al. 2001. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res. 11:959–80.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • John B. Hogenesch
    • 1
  • Steve A. Kay
    • 2
  1. 1.The Genomics Institute of the Novartis Research FoundationSan DiegoUSA
  2. 2.The Scripps Research InstituteSan DiegoUSA

Personalised recommendations