Optical Spectroscopy in Mice

  • Egbert G. Mik
  • Can Ince
Part of the Basic Science for the Cardiologist book series (BASC, volume 16)


The major role of genetically engineered mice in cardiovascular research can hardly be overlooked. At present, part of the research on molecular biology is shifted from the cellular level to the level of intact animals. However, the researcher wanting to study the influence of molecular perturbations on the level of integrated physiology in mice is faced with major challenges. Now suddenly the advantages of using mice, i.e. small size and fast breeding speed, are becoming a burden to the researcher. This is especially true in cardiovascular research where emphasis lies on measurements of hemodynamic parameters in vivo.Here, many standard operations and measurement methods, used in larger animals, prove to be useless in mice because of small size and circulating blood volume. For example, taking standard blood samples of 0.2 ml appears to have major impact on blood pressure and microvascular oxygen levels’. Also the use of anesthesia and its various effects in different strains of mice can have a major impact on the results.


Optical Coherence Tomography Functional Capillary Density Hemoglobin Saturation Phosphorescence Lifetime Reflection Spectrophotometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Bommel J, Maas MAW, Sinaasappel M, and Ince C. Intestinal microvascular P02 measurement with Pd-porphyrin phosphorescence in the mechanically ventilated mouse.Ad. Exp Med Bio1454: 189–193, 1998.CrossRefGoogle Scholar
  2. 2.
    Zuurbier CJ, Emons VM, and Ince C. Hemodynamics of anesthetized ventilated mouse models: aspects of anesthetics, fluid support, and strain. Am J Physiol 282: H2099–H2105, 2002.Google Scholar
  3. 3.
    Dumont EA, Reutelingsperger CPM, Smits JFM, Daemen MJAP, Doevendans PAF, Wellens HJJ, and Hofstra L. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med 7: 1352–1355, 2001.PubMedCrossRefGoogle Scholar
  4. 4.
    Carlsen H, Moskaug JO, Fromm SH, and Blomhoff R. In vivo imaging of NF-xB activity. J Immunol 168: 1441–1446, 2002.PubMedGoogle Scholar
  5. 5.
    Budinger TF, Benaron DA, and Koretsky AP. Imaging transgenic animals. Annu Rev Biomed Eng 01: 611–648, 1999.CrossRefGoogle Scholar
  6. 6.
    Balaban RS and Hampshire VA. Challenges is small animal noninvasive imaging. ILAR J 42: 248–262, 2001.PubMedGoogle Scholar
  7. 7.
    Shonat RD, Wachman ES, Niu W, Koretsky AP, and Farkas DL. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.BiophysJ 73:1223–1231, 1997.CrossRefGoogle Scholar
  8. 8.
    Baxter WT, Davidenko JM, Loew LM, Wuskell JP, and Jalife J. Technical features of a CCD video camera system to record cardiac fluorescence data. Ann Biomed Eng 25: 713–725, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    Green TJ, Wilson DF, Vanderkooi JM, and DeFeo SP. Phosphorimeters for analysis of decay profiles and real time monitoring of exponential decay and oxygen concentrations.Anal Biochem174: 73–79, 1988.PubMedCrossRefGoogle Scholar
  10. 10.
    Mik EG, Donkersloot C, Raat NJH, and Ince C. Excitation pulse deconvolution in luminescence lifetime analysis for oxygen measurements in vivo. Photochem Photobiol 76: 12–21, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Coremans JMCC, Ince C, and Bruining HA. NADH fluorimetry and diffuse reflectance spectroscopy on rat heart. In:Medical Optical Tomography: Functional Imaging and Monitoring.Edited by Müller et al. Washington, SPIE-The International Society for Optical Engineering, p. 589–617, 1993.Google Scholar
  12. 12.
    Ince C, Coremans JM, and Bruining HA. In vivo NADH fluorescence. Adv Exp Med Biol 317: 277–296, 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, Einander M, Kaufmann K, Levy W, Young M, Cohen P, Yoshioka H, and Boretsky R. Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci 85: 4971–4975, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Stein JC, and Ellsworth ML. Microvascular oxygen transport: impact of a left-shifted dissociation curve. Am J Physiol 262: H5I7–522, 1992.Google Scholar
  15. 15.
    Lakowicz JR. Quenching of fluorescence. In:Principles of Fluorescence SpectroscopyKluwer Academic,Plenum Publishers, New York, p. 237–65, 1999.Google Scholar
  16. 16.
    Vanderkooi JM, Maniara G, Green TJ, and Wilson DF. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem 262: 5476–5482, 1987.PubMedGoogle Scholar
  17. 17.
    Lo LW, Jenkins WT, Vinogradov SA, Evans SM, and Wilson DF. Oxygen distribution in the vasculature of mouse tissue in vivo measured using a near-infrared phosphorAdv Exp Med Biol411: 577–83, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Buise M., van Bommel J, and Ince C. Reflection spectrophotometryYearbook of Intensive Care and Emergency Medicine 2003(in press)Google Scholar
  19. 19.
    Benaron DA. Measuring and imaging in tissue using near-IR light.Optics & Photonics News:27–37, 1992.Google Scholar
  20. 20.
    Steinberg F, Rohrborn HJ, Otto T, Scheufler KM, and Streffer C. NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors. Correlations to oxygen consumption: Preclinical and clinical data. Adv Exp Med Biol 428: 69–77, 1997.Google Scholar
  21. 21.
    Masters BR. Functional imaging of cells and tissues: NADP(H) and flavoprotein redox imaging. In:Medical Optical Tomography: Functional Imaging and Monitoring.Edited by Müller et al. Washington, SPIE-The International Society for Optical Engineering, p. 555–575, 1993.Google Scholar
  22. 22.
    Chen Z, Milner TE, Wang X, Srinivas S, and Nelson JS. Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy. Photochem Photobiol 67: 56–60, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Li Q, Timmers AM, Hunter K, Gonzalez-Pola C, Lewin AS, Reitze DH, and Hauswirth WW. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse. IOVS 42: 2981–2989, 2001.Google Scholar
  24. 24.
    Alamouti B, and Funk J. Retinal thickness decreases with age: an OCT study. Br J Ophtalmol 87: 899–901, 2003.CrossRefGoogle Scholar
  25. 25.
    Bremer C, Bredow S, Mahmood U, Weissleder R, and Tung C-H. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221: 523–529, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Dumont EAWJ, Hofstra L, van Heerde WL, van den Eijnde S, Doevendans PAF, DeMuinck E, Daemen MARC, Smits JFM, Frederik P, Wellens HJJ, Daemen MJAP, and Reutelingsperger CPM. Cardiomyocyte death induced by myocardial ischemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation 102: 1564–1568, 2000.PubMedCrossRefGoogle Scholar
  27. 27.
    Mahmood U, Tung C-H, Tang Y, and Weissleder R. Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice. Radiology 224: 446–451, 2002.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang WY, Aramburu J, Douglas PS, and Izumo S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6: 482–483, 2000.PubMedCrossRefGoogle Scholar
  29. 29.
    Vanderkooi JM, and Berger JW. Excited triplet states used to study biological macromolecules at room temperature. Biochim Biophys Acta 976: 1–27, 1989.PubMedCrossRefGoogle Scholar
  30. 30.
    Sinaasappel M, and Ince C. Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo.JAppl Physiol81: 2297–2303, 1996.Google Scholar
  31. 31.
    Vinogradov SA, Fernandez-Seara MA, Dupan BW, and Wilson DF. A method for measuring oxygen distributions in tissue using frequency domain phosphorometry. Comp Biochem Physiol A Mol Integr Physiol 132: 147–152, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Sinaasappel M, van Iterson M, and Ince C. Microvascular oxygen pressure in the pig intestine during hemorrhagic shock and resuscitation.J Physiol514: 245–253, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Iterson M, Sinaasappel M, Burhop K, Trouwborst A, and Ince C. Low-volume resuscitation with a hemoglobin-based oxygen carrier after hemorrhage improves gut microvascular oxygenation in swine.JLab Clin Med132: 421–431, 1998.Google Scholar
  34. 34.
    Van Iterson M, Siegemund M, Burhop K, and Ince C. Heart and gut microvascular oxygenation in pigs after resuscitation from hemorrhage by different doses of a hemoglobin based oxygen carrier. J Trauma (in press), 2003.Google Scholar
  35. 35.
    Sato N, Takenobu K, Motoaki S, Kawano S, Abe H, and Hagihara B. Measurement of hemoperfusion and oxygen sufficiency in gastric mucosa in vivo.Gastroeneterology76: 814–819, 1979.Google Scholar
  36. 36.
    Dümmler W. Bestimmung von Hämoglobin-Oxygenierung und relativer Hämoglobin-Konzentration in biologische systemen durch auswertung von remissionspektren met hilfe der Kubelka-Munk-theorie. Friedrich-Alexander -Universität, Erlangen-Nürnberg, 1988.Google Scholar
  37. 37.
    Kubelka P, and Munk F. Ein beitrag zur optik der farbanstriche.Z.Technische Physik 11a: 76–77, 1931.Google Scholar
  38. 38.
    Kessler M, Frank KH, Höper J, Tauschek D, and Zündorf J. Reflection Spectrometry. In:Oxygen Transport to Tissue XIV.Edited by Erdmann W. and Bruley D.F. New York, Plenum Press, p. 203–212, 1992.CrossRefGoogle Scholar
  39. 39.
    Frank KH, Kessler M, Appelbaum K, and Dummler W. The Erlangen micro-lightguide spectrophotometer EMPHO 1.Phys Med Biol34(12): 1883–1900, 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Kakihana Y, Kessler M, Douplik AJ, and Krug A. Stable and reliable measurements of human skin oxygenation by EMPHO II.SPIE proc optical tomography and spectroscopy of tissue2979, 1997.Google Scholar
  41. 41.
    Krug A, and Kessler M. Validation and improvements of an algorithm for determination of hemoglobin oxygenations, based on spectral data recorded by tissue spectrophotometer.SPIE2979: 344–354, 1997.CrossRefGoogle Scholar
  42. 42.
    Siegemund M, van Bommel J, and Ince C. Assessment of regional tissue oxygenation.Intensive Care Med25: 1044–1060, 1999.PubMedCrossRefGoogle Scholar
  43. 43.
    Chance B, and Thorell B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem 234: 3044–3050, 1959.PubMedGoogle Scholar
  44. 44.
    Chance B, and Lieberman M. Intrinsic fluorescence emission from the cornea at low temperatures: evidence of mitochondrial signals and their differing redox states in epithelial and endothelial sides. Exp Eye Res 26: 111–117, 1978.PubMedCrossRefGoogle Scholar
  45. 45.
    Ince C, Ashruf JF, Avontuur JAM, Wieringa PA, Spaan JAE, and Bruining HA. Heterogeneity of the hypoxic state in the rat heart is determined at the capillary level.Am JPhysiol264: H294–H301, 1993.Google Scholar
  46. 46.
    Duebener LF, Hagino I, Schmitt K, Sakamoto T, Stamm C, Zurakowski D, Schäfers H-J, and Jonas RA. Direct visualization of minimal cerebral capillary flow during retrograde cerebral perfusion: an intravital fluorescence microscopy study in pigs. Ann Thorac Surg 75: 1288–1293, 2003.PubMedCrossRefGoogle Scholar
  47. 47.
    Coremans JM, Ince C, Bruining HA, and Puppels GJ. (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys J 72: 1849–1860, 1997.PubMedCrossRefGoogle Scholar
  48. 48.
    Eng J, Lynch RM, Balaban RS. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J 55: 621–630, 1989.PubMedCrossRefGoogle Scholar
  49. 49.
    Slaaf DW, Tangelder GJ, Reneman RS, Jäger K, and Bollinger A. A versatile incident illuminator for intravital microscopy.Int JMicrocirc Clin Exp6: 391–397, 1987.Google Scholar
  50. 50.
    Hecht E. Optics. Second Edition. Addison-Wesley Publishing Company, Massachusetts, 1987.Google Scholar
  51. 51.
    Jacques SL, Roman JR, and Lee K. Imaging superficial tissues with polarized light.Lasers Surg Med26: 119–129, 2000.PubMedCrossRefGoogle Scholar
  52. 52.
    Groner W, Winkelman WJ, Harris AG, Ince C, Bouma GJ, Messmer K, and Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation.Nat Med5: 1209–1213, 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT, and Ince C. Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91: 74–78, 2001.PubMedGoogle Scholar
  54. 54.
    Mathura KR, Bouma GJ, and Ince C. Abnormal microcirculation in brain tumours during surgery. Lancet 358: 1698–1699, 2001.PubMedCrossRefGoogle Scholar
  55. 55.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, and Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–1396, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Egbert G. Mik
    • 1
  • Can Ince
    • 1
  1. 1.Department of Physiology, Academic Medical CenterUniversity of Amsterdamthe Netherlands

Personalised recommendations