Skip to main content

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 16))

  • 149 Accesses

Abstract

Comparable inflammatory processes are activated during the acute respiratory distress syndrome (ARDS) and pneumonia. Although required in most patients with ARDS and patients with severe pneumonia, mechanical ventilation is potentially harmful because it may cause local inflammation by itself (so-called ventilator-induced lung injury, VILI). Interestingly, VILI involves the same inflammatory mechanisms as for ARDS and pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham E, Bursten S, Shenkar R, et al. (1995) Phosphatidic acid signaling mediates lung cytokine expression and lung inflammatory injury after hemorrhage in mice. J Exp Med. 181:569–75.

    Article  PubMed  CAS  Google Scholar 

  2. Shenkar R, Abraham E (1997) Hemorrhage induces rapid in vivo activation of CREB and NF-kappaB in murine intraparenchymal lung mononuclear cells. Am J Respir Cell Mol Biol. 16:145–52.

    PubMed  CAS  Google Scholar 

  3. Moine P, Shenkar R, Kaneko D, et al (1997) Systemic blood loss affects NF-kappa B regulatory mechanisms in the lungs. Am J Physiol. 273:L185–92.

    PubMed  CAS  Google Scholar 

  4. Arndt PG, Fantuzzi G, Abraham E (2000) Expression of interleukin-18 in the lung after endotoxemia or hemorrhage-induced acute lung injury. Am J Respir Cell Mol Biol. 22:708–13.

    PubMed  CAS  Google Scholar 

  5. Miotla JM, Williams TJ, Hellewell PG, Jeffery PK (1996) A role for the beta2 integrin CD1lb in mediating experimental lung injury in mice. Am J Respir Cell Mol Biol. 14:363–73.

    PubMed  CAS  Google Scholar 

  6. Miotla JM, Teixeira MM, Hellewell PG (1998) Suppression of acute lung injury in mice by an inhibitor of phosphodiesterase type 4. Am J Respir Cell Mol Biol. 18:411–20.

    PubMed  CAS  Google Scholar 

  7. Nagase T, Uozumi N, Ishii S, et al. (2000) Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2. Nat Immunol. 1:42–6.

    Article  PubMed  CAS  Google Scholar 

  8. Wang LF, Mehta S, Weicker S, et al. (2001) Relative contribution of hemopoietic and pulmonary parenchymal cells to lung inducible nitric oxide synthase (inos) activity in murine endotoxemia. Biochem Biophys Res Commun. 283:694–9.

    Article  PubMed  CAS  Google Scholar 

  9. Gatti S, Faggioni R, Echtenacher B, Ghezzi P (1993) Role of tumour necrosis factor and reactive oxygen intermediates in lipopolysaccharide-induced pulmonary oedema and lethality. Clin Exp Immunol. 91:456–61.

    Article  PubMed  CAS  Google Scholar 

  10. Denis M, Guojian L, Widmer M, Cantin A (1994) A mouse model of lung injury induced by microbial products: implication of tumor necrosis factor. Am J Respir Cell Mol Biol. 10:658–64.

    PubMed  CAS  Google Scholar 

  11. Kabir K, Gelinas JP, Chen M, et al. (2002) Characterization of a murine model of endotoxin-induced acute lung injury. Shock. 17:300–3.

    Article  PubMed  Google Scholar 

  12. Szarka RJ, Wang N, Gordon L, Nation PN, Smith RH (1997) A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J Immunol Methods. 202:49–57.

    Article  PubMed  CAS  Google Scholar 

  13. Browder W, Ha T, Chuanfu L, et al. (1999) Early activation of pulmonary nuclear factor kappaB and nuclear factor interleukin-6 in polymicrobial sepsis. J Trauma. 46:590–6.

    Article  PubMed  CAS  Google Scholar 

  14. Remick DG, Green LB, Newcomb DE, et al. (2001) CXC chemokine redundancy ensures local neutrophil recruitment during acute inflammation. Am J Pathol. 159:1149–57.

    Article  PubMed  CAS  Google Scholar 

  15. Wang le F, Patel M, Razavi HM, et al. (2002) Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis. Am J Respir Crit Care Med. 165:1634–9.

    Article  PubMed  Google Scholar 

  16. Tsujimoto H, Ono S, Mochizuki H, et al. (2002) Role of macrophage inflammatory protein 2 in acute lung injury in murine peritonitis. J Surg Res. 103:61–7.

    Article  PubMed  CAS  Google Scholar 

  17. Walley KR, McDonald TE, Higashimoto Y, Hayashi S (1999) Modulation of proinflammatory cytokines by nitric oxide in murine acute lung injury. Am J Respir Crit Care Med. 160:698–704.

    PubMed  CAS  Google Scholar 

  18. Kitamura Y, Hashimoto S, Mizuta N, et al. (2001) Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med. 163:762–9.

    PubMed  CAS  Google Scholar 

  19. Ingenito EP, Mora R, Cullivan M, et al. (2001) Decreased surfactant protein-B expression and surfactant dysfunction in a murine model of acute lung injury. Am J Respir Cell Mol Biol. 25:35–44.

    Google Scholar 

  20. Liaudet L, Mabley JG, Pacher P, et al. (2002) Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury. Ann Surg. 235:568–78.

    Article  PubMed  Google Scholar 

  21. Karmpaliotis D, Kosmidou I, Ingenito EP, et al. (2002) Angiogenic growth factors in the pathophysiology of a murine model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 283:L585–95.

    PubMed  CAS  Google Scholar 

  22. Nagase T, Ishii S, Kume K, et al. (1999) Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice. J Clin Invest. 104:1071–6.

    Article  PubMed  CAS  Google Scholar 

  23. Nemzek JA, Call DR, Ebong SJ, et al. (2000) Immunopathology of a two-hit murine model of acid aspiration lung injury. Am J Physiol Lung Cell Mol Physiol. 278:L512–20.

    PubMed  CAS  Google Scholar 

  24. Kollef MH, Schuster DP (1995) The acute respiratory distress syndrome. N Engl J Med.332:27–37.

    Article  PubMed  CAS  Google Scholar 

  25. Garber BG, Hebert PC, Yelle JD, Hodder RV, McGowan J (1996) Adult respiratory distress syndrome: a systemic overview of incidence and risk factors. Crit Care Med. 24:687–95.

    Article  PubMed  CAS  Google Scholar 

  26. Schultz MJ, Knapp S, van der Poll T (2002) Regulatory role of alveolar macrophages and cytokines in pulmonary host defense. In: Vincent JL (eds) Yearbook of Intensive Care and Emergency Medicine 2002. Springer Verlag. pp 65–76.

    Google Scholar 

  27. Mehrad B, Standiford TJ (1999) Role of cytokines in pulmonary antimicrobial host defense. Immunol Res. 20:15–27.

    Article  PubMed  CAS  Google Scholar 

  28. Greenberger MJ, Strieter RM, Kunkel SL, et al. (1995) Neutralization of IL-10 increasessurvival in a murine model of Klebsiella pneumonia. J Immunol. 155:722–9.

    PubMed  CAS  Google Scholar 

  29. Greenberger MJ, Kunkel SL, Strieter RM, et al. (1996) IL-12 gene therapy protects mice in lethal Klebsiella pneumonia. J Immunol. 157:3006–12.

    PubMed  CAS  Google Scholar 

  30. Sawa T, Corry DB, Gropper MA, et al. (1997) IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J Immunol. 159:2858–66.

    PubMed  CAS  Google Scholar 

  31. Steinhauser ML, Hogaboam CM, Kunkel SL, et al. (1999) IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol. 162:392–9.

    PubMed  CAS  Google Scholar 

  32. Chen GH, Reddy RC, Newstead MW, et al. (2000) Intrapulmonary TNF gene therapy reverses sepsis-induced suppression of lung antibacterial host defense. J Immunol. 165:6496–503.

    PubMed  CAS  Google Scholar 

  33. Gyetko MR, Sud S, Kendall T, et al. (2000) Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J Immunol. 165:1513–9.

    PubMed  CAS  Google Scholar 

  34. Tsai WC, Strieter RM, Mehrad B, et al. (2000) CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immun. 68:4289–96.

    Article  PubMed  CAS  Google Scholar 

  35. Moore TA, Moore BB, Newstead MW, Standiford TJ (2000) Gamma delta-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia. J Immunol. 165:2643–50.

    PubMed  CAS  Google Scholar 

  36. Lindell DM, Standiford TJ, Mancuso P, Leshen ZJ, Huffnagle GB (2001) Macrophage inflammatory protein lalpha/CCL3 is required for clearance of an acute Klebsiella pneumoniae pulmonary infection. Infect Immun. 69:6364–9.

    Article  PubMed  CAS  Google Scholar 

  37. Chen SC, Mehrad B, Deng JC, et al. (2001) Impaired pulmonary host defense in micelacking expression of the CXC chemokine lungkine. J Immunol. 166:3362–8.

    PubMed  CAS  Google Scholar 

  38. van der Poll T, Marchant A, Keogh CV, Goldman M, Lowry SF (1996) Interleukin-10impairs host defense in murine pneumococcal pneumonia. J Infect Dis. 174:994–1000.

    Article  PubMed  Google Scholar 

  39. van der Poll T, Keogh CV, Buurman WA, Lowry SF (1997) Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med. 155:603–8.

    PubMed  Google Scholar 

  40. Schultz MJ, Wijnholds J, Peppelenbosch MP, et al. (2001) Mice lacking the multidrug resistance protein 1 are resistant to Streptococcus pneumoniae-induced pneumonia. J Immunol. 166:4059–64.

    PubMed  CAS  Google Scholar 

  41. Schultz MJ, Rijneveld AW, Speelman P, Deventer SJ, van der Poll T (2001) Endogenous interferon-gamma impairs bacterial clearance from lungs during Pseudomonas aeruginosa pneumonia. Eur Cytokine Netw. 12:39–44.

    PubMed  CAS  Google Scholar 

  42. Rijneveld AW, Lauw FN, Schultz MJ, et al. (2002) The role of interferon-gamma in murine pneumococcal pneumonia. J Infect Dis. 185:91–7.

    Article  PubMed  CAS  Google Scholar 

  43. Lauw FN, Branger J, Florquin S, et al. (2002) IL-18 improves the early antimicrobial host response to pneumococcal pneumonia. J Immunol. 168:372–8.

    PubMed  CAS  Google Scholar 

  44. Rijneveld AW, Levi M, Florquin S, et al. (2002) Urokinase receptor is necessary for adequate host defense against pneumococcal pneumonia. J Immunol. 168:3507–11.

    PubMed  CAS  Google Scholar 

  45. Schultz MJ, Rijneveld AW, Florquin S, et al. (2002) Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 282:L285–90.

    PubMed  CAS  Google Scholar 

  46. Skerrett SJ, Martin TR, Chi EY, et al. (1999) Role of the type 1 TNF receptor in lung inflammation after inhalation of endotoxin or Pseudomonas aeruginosa. Am J Physiol. 276:L715–27.

    PubMed  CAS  Google Scholar 

  47. Laichalk LL, Kunkel SL, Strieter RM, et al. (1996) Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect Immun. 64:5211–8.

    PubMed  CAS  Google Scholar 

  48. Rijneveld AW, Florquin S, Branger J, et al. (2001) TNF-alpha compensates for the impaired host defense of IL-1 type I receptor-deficient mice during pneumococcal pneumonia. J Immunol. 167:5240–6.

    PubMed  CAS  Google Scholar 

  49. Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol. 89:1645–55.

    PubMed  Google Scholar 

  50. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest. 116:9S–15S. 51.Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians. 110:9S–15S.

    Google Scholar 

  51. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 143:1115–20.

    PubMed  CAS  Google Scholar 

  52. Zhang H, Grasso S, Downey G, et al. (2000) Mechanical ventilation activates polymorphonuclear cells (abstract). Am J Resp crit Care. 161:A211.

    Google Scholar 

  53. Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med. 21:131–43.

    Article  PubMed  CAS  Google Scholar 

  54. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 157:1721–5.

    PubMed  CAS  Google Scholar 

  55. Cheng KC, Zhang H, Lin CY, Slutsky AS (2002) Ventilation with negative airway pressure induces a cytokine response in isolated mouse lung. Anesth Analg. 94:1577–82.

    PubMed  Google Scholar 

  56. Tremblay LN, Miatto D, Hamid Q, Govindarajan A, Slutsky AS (2002) Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med. 30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  57. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol. 277:L167–73.

    PubMed  CAS  Google Scholar 

  58. Nahum A, Hoyt J, Schmitz L, et al. (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med. 25:173–343.

    Article  Google Scholar 

  59. Savel RH, Yao EC, Gropper MA (2001) Protective effects of low tidal volume ventilation in a rabbit model of Pseudomonas aeruginosa-induced acute lung injury. Crit Care Med. 29:392–8.

    Article  PubMed  CAS  Google Scholar 

  60. Verbrugge SJ, Sorm V, van ‘t Veen A, et al. (1998) Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation. Intensive Care Med. 24:172–7.

    Article  PubMed  CAS  Google Scholar 

  61. Murphy DB, Cregg N, Tremblay L, et al. (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med. 162:27–33.

    PubMed  CAS  Google Scholar 

  62. Haitsma JJ, Uhlig S, Goggel R, et al. (2000) Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med. 26:1515–22.

    Article  PubMed  CAS  Google Scholar 

  63. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med. 342:1301–1308.

    Article  Google Scholar 

  64. Ranieri VM, Suter PM, Tortorella C, et al. (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. Jama. 282:54–61.

    Article  PubMed  CAS  Google Scholar 

  65. Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. Jama. 284:43–4.

    Article  PubMed  CAS  Google Scholar 

  66. Bernard GR, Artigas A, Brigham KL, et al. (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 149:818–24.

    PubMed  CAS  Google Scholar 

  67. Torres A, Aznar R, Gatell JM, et al. (1990) Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis. 142:5238.

    Google Scholar 

  68. Reddy RC, Chen GH, Newstead MW, et al. (2001) Alveolar macrophage deactivation in murine septic peritonitis: role of interleukin 10. Infect Immun. 69:1394–401.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schultz, M.J., van der Poll, T. (2004). Acute Lung Injury and Pneumonia in Mice. In: Ince, C. (eds) The Physiological Genomics of the Critically Ill Mouse. Basic Science for the Cardiologist, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0483-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0483-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5099-6

  • Online ISBN: 978-1-4615-0483-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics