Properties of High-Index Core Fibres

  • Anders Bjarklev
  • Jes Broeng
  • Araceli Sanchez Bjarklev


Photonic crystal fibres may be divided into classes of which the two major ones are the index-guiding or high-index core fibres and the photonic bandgap or low-index core fibres. In this chapter, we will describe the fundamental properties of high-index core fibres, in which the waveguiding principle may be expressed as modified total internal reflection (MTIR). In high-index core PCFs, the core will — as expressed by the name - have a higher effective refractive index value than the surrounding cladding material. However, these effective refractive indices are typically obtained through the introduction of air holes, which may be ordered in different patterns, and which may have different dimensions, shapes etc.


Photonic Crystal Photonic Crystal Fibre Core Fibre Conventional Fibre Modify Chemical Vapour Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.1] K.P. Hansen, J.R. Simonsen, J. Broeng, P.M.W. Skovgaard, A. Peterson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm”, Optical Fiber Communication Conference, OFC 2002 Postdeadline Paper, FA9-1Google Scholar
  2. 5.2
    B.J. Eggleton, C.Kerbage, P.S. Westbrook, R.S. Windeler, and A. Hale, “Microstructured optical fiber devices”, Optics Express, Vol.9, No.13, Dec.2001, pp.698-713.ADSCrossRefGoogle Scholar
  3. 5.3
    T. M. Monro, Y. D. West, D. W. Hewak, N.G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres”, IEE Electronics Letters, Vol.36, No.24, Nov.2000, pp. 1998-2000.CrossRefGoogle Scholar
  4. 5.4
    A. Argyros, I. M. Bassett, M. A.van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovoci, R. C. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres”, Optics Express, Vol.9, No.13, Dec.2001, pp.813-820.ADSCrossRefGoogle Scholar
  5. 5.5
    P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber”, The Bell System Technical Journal, Vol.52, No.2, pp. 265-269, Febr. 1973.Google Scholar
  6. 5.6
    E. A. J. Marcatili, “Slab-coupled waveguides”, The Bell System Technical Journal, Vol.53, No.4, pp. 645-674, April 1974Google Scholar
  7. 5.7
    P. Kaiser, and H. W. Astle, “Low-loss single-material fibers made from pure fused silica”, The Bell System Technical Journal Vol.53, No.6, pp. 1021-1039, July-August 1974.Google Scholar
  8. 5.8
    J. Knight, T. Birks, P. Russell, and J. Sandro, “Properties of photonic crystal fiber and the effective index model”, Journal of the Optical Society of America A, vol. 15, pp. 748-52, March 1998.ADSCrossRefGoogle Scholar
  9. 5.9
    A. Snyder and J. Love, “Optical waveguide theory”, Kluwer Academic Publishers, 2000, ISBN: 0-412-09950-0.Google Scholar
  10. 5.10
    J. Knight, T. Birks, P. Russell, and D. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding”, Optics Letters, vol. 21, pp. 1547-9, Oct. 1996.ADSCrossRefGoogle Scholar
  11. 5.11
    D. H. Smithgall, T. J. Miller, and R. E. Frazee Jr., “A novel MCVD process control technique”, IEEE Journal of Lightwave Technology, Vol.4, No.9, pp. 1360-1366, 1986.CrossRefGoogle Scholar
  12. [5.12] D. B. Keck, P. C. Schultz, and F. W. Zimar, US Patent 3,737,393.Google Scholar
  13. 5.13
    Y. Ohmori, F. Hanawa, and M. Nakahara, “Fabrication of low-loss Al203-doped silica fibres”, IEE Electronics Letters, VOL.19, PP.261-262, 1983.CrossRefGoogle Scholar
  14. 5.14
    T. Birks, J. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber”, Optics Letters, vol. 22, pp. 961-963, July 1997.ADSCrossRefGoogle Scholar
  15. 5.15
    J. Sakai, and T. Kimura, “Bending loss of propagation modes in arbitrary-index profile optical fibers”, Applied Optics, vol. 17, pp. 1499-1506, 1978.ADSCrossRefGoogle Scholar
  16. 5.16
    A. Bjarklev, J. Broeng, S. Barkou, and K. Dridi, “Dispersion properties of photonic crystal fibers”, European Conference on Optical Communications, pp. 135-136, Madrid, Sept. 20-24, 1998.Google Scholar
  17. 5.17
    M. Gander, R. McBride, J. Jones, D. Mogilevtsev, T. Birks, J. Knight, and P. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre”, IEE Electronics Letters, vol. 35, pp. 63-43, Jan. 1999.CrossRefGoogle Scholar
  18. 5.18
    T. Monro, D. Richardson, and N. Broderick, “Holey fibres: an efficient modal model”, Journal of Lightwave Technology, vol. 17, pp. 1093-1102, June 1999.ADSCrossRefGoogle Scholar
  19. 5.19
    D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “group-velocity dispersion in photonic crystal fibres”, Optics Letters, Vol.23, pp.1662-1664, Nov.1998.ADSCrossRefGoogle Scholar
  20. 5.20
    A. Ferrando, E. Silvestre, J. Miret, J. Monsoriu, M. Andres, and P. Russell, “Designing a photonic crystal fibre with flattened chromatic dispersion”, IEE Electronics Letters, Vol. 24, pp. 276-278, March 1999.ADSGoogle Scholar
  21. 5.21
    J. Ranka, R. Windeler, and A. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomolous dispersion at 800 nm”, Conference on Laser and Electro-Optics, CLEO'99, Baltimore, May 1999. CPD8.Google Scholar
  22. 5.22
    B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibres”, Optics Letters, Vol.27, No. 19, Oct.2002, pp. 1684-1686.ADSCrossRefGoogle Scholar
  23. 5.23
    N. A. Mortensen, “Effective area of photonic crystal fibres”, Optics Express, Vol.10, pp.341-348, 2002.ADSCrossRefGoogle Scholar
  24. 5.24
    T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method”, Optics Express, Vol. 11, pp. 721- 732, 2001.ADSCrossRefGoogle Scholar
  25. 5.25
    T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distribution”, Optics Letters, Vol.25, No.4, Febr. 15, pp.206-208, 2000.ADSCrossRefGoogle Scholar
  26. 5.26
    M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers”, Optics Letters, Vol.26, No.8, April 15, pp.488-490, 2001.ADSCrossRefGoogle Scholar
  27. 5.27
    T. Hasagawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km”, Optical Fiber Communication Conference, OFC'2001, Anaheim, California, USA, March 17-22, Postdeadline paper PD5, 2001Google Scholar
  28. 5.28
    T. Hasagawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modelling and design optimization of hole-assisted lightguide fiber by full-vector finite element method”, European Conference on Optical Communications, ECOC'2001, Amsterdam, The Netherlands, Sept.30 - Oct.4, Paper We.L.2.5, 2001.Google Scholar
  29. 5.29
    T. Hasagawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assited lightguide fiber for large anomalous dispersion and low optical loss”, Optics Express, Vol.9, No.13, Dec.17, pp.681-686, 2001ADSCrossRefGoogle Scholar
  30. 5.30
    H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and]M. Fujita, “Low-loss, 2 km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band”, CLEO'2001, Paper CPD3, 2001.Google Scholar
  31. 5.31
    J.A. West, N. Venkataraman, CM. Smith, and T. Gallagher, “Photonic crystal fibers”, European Conference on Optical Communications, ECOC'2001, Amsterdam, The Netherlands, Sept.30 - Oct.4, Paper Th.A.2.2, 2001.Google Scholar
  32. 5.32
    J. W. Hicks, “Hollow tube method for forming an optical fiber” US patent 4551162, 1985.Google Scholar
  33. 5.33
    V. Vali, and D. B. Chang “Low index of refraction optical fiber with tubular core and/or cladding”, US Patent 5155792, 1992.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Anders Bjarklev
  • Jes Broeng
  • Araceli Sanchez Bjarklev

There are no affiliations available

Personalised recommendations