Skip to main content

Fabrication of Photonic Crystal Fibres

  • Chapter
Photonic Crystal Fibres

Abstract

The idea of producing optical fibres from a single low-loss material with microscopic air holes goes back to the early days of optical fibre technology, and already in 1974 Kaiser et al. [4.1] reported the first results on singlematerial silica optical fibres. In the early days — as well as today — the key issues have been to obtain a desired fibre structure for a given application, and maintain this structure for very long fibre lengths. It will, generally, be needed that the fibre attenuation is kept at a rather low level, and the acceptable attenuation level will be given by the specific application. In this chapter, we will address the fundamental issues of fabrication of photonic crystal fibres, by first discussing the most commonly used preform fabrication method. Secondly, we will report details about the fibre drawing and coating procedure. Furthermore, we will discuss how additional doping techniques are needed for providing hybrid fibre types (such as the holeassisted lightguide fibre (HALF) [4.6]) combining the approach of microstructuring with index-raised doped glass or active dopants such as rare-earth ions needed for new amplifiers and lasers. The chapter will also shortly address the issues of photonic crystal fibres in low-melting-point glasses and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.V.Kaiser, and H.W.Astle, “Low-loss single-material fibers made from pure fused silica”, The Bell System Technica journal, Vol.53, 1974, pp.1021-1039.

    Google Scholar 

  2. A. Bjarklev, “Optical Fiber Amplifiers: Design and System Application”, Artech House, Boston-London, August 1993, ISBN: 0-89 006-659-0.

    Google Scholar 

  3. C.K.Kao, “Optical Fibre”, Peter Peregrinus, London, 1988.

    Google Scholar 

  4. Biomedical Sensors, Fibers, and Optical Delivery Systems, vol. 3570 of Proceedings of the SPIE- The International Society for Optical Engineering, 1999.

    Google Scholar 

  5. T. Birks, D. Atkin, G. Wylangowski, P. Russell, and P. Roberts, “2D photonic band gap structures in fibre form,” Photonic Band Gap Materials (C. Soukoulis, ed.), Kluwer, 1996.

    Google Scholar 

  6. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss”, Optics Express, Vol.9, No.13, Dec.2001, pp.681-686.

    Article  ADS  Google Scholar 

  7. J. Knight, J. Broeng, T. Birks, and P. Russell, “Photonic band gap guidance in optical fibers,” Science, Vol. 282, Nov. 1998, pp.1476-1478.

    Article  Google Scholar 

  8. J. Broeng, D. Mogilevtsev, S. Barkou, and A. Bjarklev, “Photonic crystal fibres: a new class of optical waveguides,” Optical Fiber Technology, Vol.5, July 1999, pp. 305-30.

    Article  ADS  Google Scholar 

  9. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km”, OFC’2001, 2001, Post deadline paper PD5.

    Google Scholar 

  10. T. Hasegawa, E. Sasaoka, M. Onishi, M..Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss” Optics Express, Vol.9, No.13, Dec.2001, pp.681-686.

    Article  ADS  Google Scholar 

  11. P.J.Bennett, T.M. Monro, and D. J. Richardson, ‘Towards practical holey fibre technology: fabrication, splicing, modelling and characterization’, Optics Letters, Vol.24, 1999, pp.1203-1205.

    Article  ADS  Google Scholar 

  12. T. M. Monro, Y. D. West, D. W. Hewak, N.G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres”, IEE Electronics Letters, Vol.36, No.24, Nov.2000.

    Google Scholar 

  13. Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission”, Fiber and Integrated Optics, Vol.19, 2000, pp.229-250.

    Article  ADS  Google Scholar 

  14. A. Argyros, I. M. Bassett, M. A.van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovoci, R. C. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres”, Optics Express, Vol.9, No.13, Dec.2001, pp.813-820.

    Article  ADS  Google Scholar 

  15. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the fabrication of hollow fibers: Capillary drawing”, IEEE Journal of Lightwave Technology, Vol.19, No. 12, Dec.2001, pp. 1924-1930.

    Article  Google Scholar 

  16. J. Broeng, “Photonic crystal fibres”, Ph.D. Thesis, Research Center COM, Technical University of Denmark, September 30, 1999, ISBN:87-90 974-07-7

    Google Scholar 

  17. J. B. Eom, K. W. Park, Y.Chung, W-T. Han, U-C. Paek, D. Y. Kim, and B. H. Lee, “Optical properties measurement of several photonic crystal fibers”, SPIE, Photonics West 2002, San Jose, CA, USA.

    Google Scholar 

  18. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre”, Optics Express, Vol.9, 2001, pp.319-327.

    Article  ADS  Google Scholar 

  19. P.W. France, and M.C. Brierley, “Progress in Fluoride Fibre Lasers and Amplifiers”, Proceedings of Society of Photo-Optical Instrumentation Engineers Conference, OE/Fibers’90, part: Fiber Laser Sources and Amplifiers II, San Jose, Sepot.1990, Vol.1373, pp.33-39.

    Article  Google Scholar 

  20. T.M. Monro, K.M. Kiang, J.H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D.W. Hewak, H.N. Rutt, and D.J. Richardson, “Highly nonlinear extruded single-mode holey optical fibers”, Proc OFC’2002, OSA Technical Digest 315-317, Anaheim, California, 2002.

    Google Scholar 

  21. K.M. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, and H.N. Rutt, “Extruded singlemode non-silica glass holey optical fibres”, IEE Electronics Letters, Vol.38, No. 12, June 2002, pp.546-547.

    Article  Google Scholar 

  22. S.R.Friberg, and P.W.Smith, “Nonlinear optical glasses for ultrafast optical switches”, IEEE Journal of Quantum Electronics, Vol.QE-23, 1987, pp.2089-2234.

    Article  ADS  Google Scholar 

  23. G.P.Agrawal, “Nonlinear Fibre Optics”, Academic Press, San Diego, 1995.

    Google Scholar 

  24. J. B. Nielsen, T. Søndergaard, S. E. Barkou, A. Bjarklev, J. Broeng, M. B. Nielsen, “Two-dimensional Kagome structure, fundamental hexagonal photonic crystal configuration”, IEE Electronics Letters, Vol. 35, No. 20, pp. 1736-1737, 1999.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bjarklev, A., Broeng, J., Bjarklev, A.S. (2003). Fabrication of Photonic Crystal Fibres. In: Photonic Crystal Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0475-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0475-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5095-8

  • Online ISBN: 978-1-4615-0475-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics