Skip to main content

Cytoprotection of Cardiac Myocytes by Polyunsaturated Fatty Acids

  • Chapter
Book cover Frontiers in Cardiovascular Health

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 9))

  • 152 Accesses

Summary

Most of the risk factors associated with cardiovascular disease can be controlled by nutrition. Polyunsaturated fatty acids (PUFA) of the 03C93 series are known for their beneficial effect on the risk, but can also influence the severity of cardiac disease through their direct action on the myocardium. Introducing ω3 PUFA in the diet results in a marked decrease of the AA/DHA ratio, mainly due to an increase in membrane DHA content. In several experimental models, such structural changes were reported to affect cardiac functions. Among them the membrane ω3 PUFA appear to affect the oxygen cost of energy production by decreasing the fatty acid beta-oxidation in cardiac myocytes, and the improved recovery of mitochondrial function in the post-ischemic heart of rats fed fish oil. On the other hand, the incorporation of DHA in cardiac myocyte membranes induces a large decrease in the biochemical response to catecholamine stimulation. Although the mechanism does not involve a direct modification of the adrenergic receptors, the consequences of DHA intake in vivo reduces heart rate and show some similarity with the cardiac effect of β-blockers. This observation could be correlated with the observations that which occurs during ischemia and reperfusion-induced arrhythmias are largely reduced when cardiac membranes contains 15–20% DHA. In addition, the presence of ω3 PUFAs in the membranes reduces the synthesis of Prostaglandines as in other organs. However, they can exert a fine-tuned control of myocardium prostaglandin synthesis in pathological conditions, since during hypoxia and reoxygenation, the effect of ω3 PUFAs becomes more specific to each prostaglandin, with no inhibition of the hypoxia-induced PGE2 synthesis, and a large inhibition of the reoxygenation-induced PGI2 release. The 3 mechanisms reported here may account for the significantly positive effects of dietary ω3 PUFAs reported in epidemiological studies. Each one contributes to cardiac protection in reference to a cardio-active drug (metabolic effectors, β-blockers, or aspirin), largely appreciated in the treatment of cardiac diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charnock JS, Abeywardena M, Tan D, McLennan P. 1991. Omega-3 and omega-6 PUFA’s have different effects on the phospholipid fatty acid composition of rat myocardial muscle when added to a saturated fatty acid dietary supplement. Nutr Res 11:1013–1024.

    Article  CAS  Google Scholar 

  2. Horrobin DF. 1993. Omega-6 and omega-3 essential fatty acids in atherosclerosis. Semin Thromb Hemost 19:129–137.

    Article  PubMed  CAS  Google Scholar 

  3. Nordoy A. 1999. Dietary fatty acids and coronary heart disease. Lipids 34 Suppl:S19–S22.

    Article  Google Scholar 

  4. Dimmitt SB. 1995. Recent insights into dietary fats and cardiovascular disease. Clin Exp Pharmacol Physiol 22:204–208.

    Article  PubMed  CAS  Google Scholar 

  5. Carlier H, Bernard A, Caselli C. 1991. Digestion and absorption of polyunsaturated fatty acids. Reprod Nutr Dev 31:475–500.

    Article  PubMed  CAS  Google Scholar 

  6. Dyerberg J, Jorgensen KA. 1982. Marine oils and thrombogenesis. Prog Lipid Res 21:255–269.

    Article  PubMed  CAS  Google Scholar 

  7. Dyerberg J, Bang HO, Hjorne N. 1975. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28:958–966.

    PubMed  CAS  Google Scholar 

  8. Schmidt EB, Dyerberg J. 1994. Omega-3 fatty acids. Current status in cardiovascular medicine. Drugs 47:405–424.

    Article  PubMed  CAS  Google Scholar 

  9. Abeywardena MY, McLennan PL, Charnock JS. 1991. Differences between in vivo and in vitro production of eicosanoids following long-term dietary fish oil supplementation in the rat. Prostaglandins Leukot Essent Fatty Acids 42:159–165.

    Article  PubMed  CAS  Google Scholar 

  10. Hirai A, Terano T, Tamura Y, Yoshida S. 1989. Eicosapentaenoic acid and adult diseases in Japan: epidemiological and clinical aspects. J Intern Med 225:69–75.

    Article  Google Scholar 

  11. Waeber B, Nussberger J, Brunner H. 1992. Antihypertenseurs. In ≪Pharmacologie—Des concepts fondamentaux aux applications thérapeutiques≫. (Ed Schorderet E et al.) pp. 130–153.

    Google Scholar 

  12. Leaf A, Weber PC. 1988. Cardiovascular effects of n-3 fatty acids. N Engl J Med 318:549–557.

    Article  PubMed  CAS  Google Scholar 

  13. Sellmayer A, Hrboticky N, Weber PC. 1999. Lipids in vascular function. Lipids 34 Suppl:S13–S18.

    Article  PubMed  CAS  Google Scholar 

  14. Horrocks LA, Yeo YK. 1999. Docosahexaenoic acid-enriched foods: production and effects on blood lipids. Lipids 34 Suppl:S313.

    Article  PubMed  CAS  Google Scholar 

  15. GISSI group. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Soprawivenza nell’Infarto miocardico. Lancet 354:447–455.

    Article  Google Scholar 

  16. Knapp HR. 1991. Cardiovascular III: Circulation—Blood Pressure. Hypotensive effects of ω3 fatty acids: mechanistic aspects. In “Health Effects of ω3 Polyunsaturated Fatty Acids in Seafoods” pp. 313–328.

    Google Scholar 

  17. Chin JP, Dart AM. 1995. How do fish oils affect vascular function? Clin Exp Pharmacol Physiol 22:71–81.

    Article  PubMed  CAS  Google Scholar 

  18. Chen HW, Lii CK, Chen WT, Wang ML, Ou CC. 1996. Blood pressure-lowering effect of fish oil is independent of thromboxane A2 level in spontaneously hypertensive rats. Prostaglandins Leukot Essent Fatty Acids 54:147–154.

    Article  PubMed  CAS  Google Scholar 

  19. Rousseau D, Moreau D, Raederstorff D, Sergiel JP, Rupp H, Muggli R, Grynberg A. 1998. Is a dietary n-3 fatty acid supplement able to influence the cardiac effect of the psychological stress. Mol Cell Biochem 178:353–366.

    Article  PubMed  CAS  Google Scholar 

  20. Engler MM, Engler MB, Goodfriend TL, Ball DL, Yu Z, Su P, Kroetz DL. 1999. Docosahexaenoic acid is an antihypertensive nutrient that affects aldosterone production in SHR. Proc Soc Exp Biol Med 221:32–38.

    Article  PubMed  CAS  Google Scholar 

  21. Rousseau D, Héliès C, Raederstorff D, Moreau D, Grynberg A. 2001. Dietary n-3 polyunsaturated fatty acids affect the development of reno-vascular hypertension in rats. Mol Cell Biochem 225: 109–119.

    Article  PubMed  CAS  Google Scholar 

  22. Gray DR, Gozzip CG, Eastham JH, Kashyap ML. 1996. Fish oil as an adjuvant in the treatment of hypertension. Pharmacotherapy 16:295–300.

    PubMed  CAS  Google Scholar 

  23. Kenny D, Egan BM. 1994. Is there a role for dietary fish oil in the treatment of hypertension? J Hum Hypertens 8:895–905.

    PubMed  CAS  Google Scholar 

  24. Morris MC, Sacks F, Rosner B. 1993. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation 88:523–533.

    Article  PubMed  CAS  Google Scholar 

  25. Charnock JS, Abeywardena MY, McLennan PL. 1986. Comparative changes in the fatty acid composition of rat cardiac phospholipids after long term feeding of sunflower seed oil- or tuna fish oil-supplemented diets. Ann Nutr Metab 30:393–406.

    Article  PubMed  CAS  Google Scholar 

  26. Hock CE, Holahan MA, Reibel DK. 1987. Effect of dietary fish oil on myocardial phospholipids and myocardial ischemic damage. Am J Physiol 252:H554–H560.

    PubMed  CAS  Google Scholar 

  27. Demaison L, Sergiel JP, Moreau D, Grynberg A. 1994. Influence of the Phospholipid n-6/n-3 Polyunsaturated Fatty Acid Ratio on Mitochondrial Oxidative Metabolism Before and After Myocardial Ischemia. Biochim Biophys Acta 1227:53–59.

    Article  PubMed  CAS  Google Scholar 

  28. Gudbjarnason S, Hallgrimsson J. 1976. Prostaglandins and polyunsaturated fatty acids in heart muscle. Acta Biol Med Germ 35:1069–1080.

    PubMed  CAS  Google Scholar 

  29. McLennan PL, Abeywardena MY, Charnock JS. 1988. Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am Heart J 116:709–717.

    Article  PubMed  CAS  Google Scholar 

  30. McLennan PL. 1992. Relative effects of dietary saturated, monounsaturated and polyunsaturated fatty acids on cardiac arrhythmias in the rat. Am J Clin Nutr 57:207–212.

    Google Scholar 

  31. McLennan PL, Bridle TM, Abeywardena MY, Charnock JS. 1993. Comparative efficacy of n-3 and n-6 polyunsaturated fatty acids in modulating ventricular fibrillation threshold in the marmoset monkey. Am J Clin Nutr 58:666–669.

    PubMed  CAS  Google Scholar 

  32. McLennan PL, Howe PR, Abeywardena MY, Muggli R, Raederstorff D, Mano M, Rayner T, Head RJ. 1996. The cardiovascular protective role of docosahexaenoic acid. Eur J Pharmacol 300:83–89.

    Article  PubMed  CAS  Google Scholar 

  33. Liautaud S, Grynberg A, Mourot J, Athias P. 1991. Contribution to the Use of Cultured Cardiomyocytes as a Model in Nutritional Studies: Fatty Acid Composition of the Hearts of Rats Fed Linseed Oil or Sunflower Oil and Cardiomyocytes Grown on their Sera. Cardioscience 2:55–61.

    PubMed  CAS  Google Scholar 

  34. Voss A, Reinhart M, Sankarappa S, Sprecher H. 1991. The metabolism of 7,10,13,16,19-docos-apentaenoic acid to 4,7,10,13,16,19-docosahexaenoic in rat liver is dependant on an delta-4 desat-urase. J Biol Chem 266:19995–20000.

    PubMed  CAS  Google Scholar 

  35. Saddik M, Gamble J, Witters LA, Lopaschuk GD. 1993. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 268:25836–25845.

    PubMed  CAS  Google Scholar 

  36. Kudo N, Barr A, Barr R, Lopaschuk GD. 1995. 5′AMP activated protein kinase inhibition of acetyl CoA carboxylase can explain the high rates of fatty acid oxidation in the reperfused ischemic heart. J Biol Chem 270:17511–17520.

    Google Scholar 

  37. Pauly DF, Kirk KA, McMillin JB. 1991. Carnitine palmitoyl transferase in cardiac ischemia. A potential site for altered fatty acid metabolism. Circ Res 68:1085–1094.

    Article  PubMed  CAS  Google Scholar 

  38. Gamble J, Lopaschuk GD. 1997. Insulin inhibition of 5′ adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46:1270–1274.

    Article  PubMed  CAS  Google Scholar 

  39. Pepe S, McLennan PL. 1992. Modulation of myocardial oxygen requirements by dietary lipids in the isolated erythrocyte perfused working rat heart. J Mol Cell Cardiol 24:S115.

    Article  Google Scholar 

  40. Demaison L, Bouveret P, Grynberg A. 1993. Polyunsaturated Fatty Acid Composition and Lipid Metabolism in Cultured Cardiomyocytes and Isolated Working Rat Heart. Nutr Res 13:1003–1015.

    Article  CAS  Google Scholar 

  41. Alam SQ, Ren YF, Alam BS. 1988. (3H)Forskolin- and (3H)Dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils. Lipids 23:207–213.

    Article  PubMed  CAS  Google Scholar 

  42. Skuladottir GV, Schioth HB, Gudbjarnason S. 1993. Polyunsaturated Fatty Acids in Heart Muscle and alpha(l)-Adrenoceptor Binding Properties. Biochim Biophys Acta 1178:49–54.

    Article  PubMed  CAS  Google Scholar 

  43. Gudmundsdottir E, Benediktsdottir VE, Gudbjarnason S. 1991. Combined effects of age and dietary fat on beta 1-receptors and Ca2+ channels in rat hearts. Am J Physiol 260:H66–H72.

    PubMed  CAS  Google Scholar 

  44. McMurchie EJ. 1988. Dietary lipids and the regulation of membrane fluidity and function, in Advances in membrane fluidity, Vol 3, Physiological Regulation of membrane fluidity. Aloia, Curtain and Gordon Eds, Alan R Liss Inc., New York. pp. 189–237.

    Google Scholar 

  45. Delerive P, Oudot F, Ponsard B, Talpin S, Sergiel JP, Cordelet C, Athias P, Grynberg A. 1999. Hypoxia-Reoxygenation and Polyunsaturated Fatty Acids Modulate Adrenergic Functions in Cultured Cardiomyocytes. J Mol Cell Cardiol 31:377–386.

    Article  PubMed  CAS  Google Scholar 

  46. Ponsard B, Durot I, Delerive P, Oudot F, Cordelet C, Grynberg A, Athias P. 1999. Cross influence of membrane PUFA and hypoxia reoxygenation on alpha- and beta-adrenergic function of rat cardiomyocytes. Lipids 34:457–466.

    Article  PubMed  CAS  Google Scholar 

  47. Grynberg A, Fournier A, Sergiel JP, Athias P. 1995. Effect of docosahexaenoic acid and eicosapen-taenoic acid in the phospholipids of rat heart muscle cells on adrenoceptor responsiveness and mechanism. J Mol Cell Cardiol 27:2507–2520.

    Article  PubMed  CAS  Google Scholar 

  48. Grynberg A, Fournier A, Sergiel JP, Athias P. 1996. Membrane DHA versus EPA and the beating function of the Cardiomyocytes through the adrenergic receptors. Lipids 31:S205–S210.

    Article  PubMed  CAS  Google Scholar 

  49. Meij JTA, Bordoni A, Dekkers DHW, Lamers JMJ, Guarnieri C. 1990. Alterations in polyunsaturated fatty acid composition of cardiac membrane phospholipids and αl adrenoceptor mediated phos-phatidylinositol turnover. Cardiovasc Res 24:94–101.

    Article  PubMed  CAS  Google Scholar 

  50. Rousseau D, Héliès C, Raederstorff D, Moreau D, Grynberg A. 2001. [N-3 polyunsaturated fatty acids in insulin resistance: effect on cardiac rhythm and blood pressure]. Arch Mal CoeurVaiss 94:369.

    Google Scholar 

  51. Extramiana F, Tavernier R, Maison-Blanche P, Neyroud N, Jordaens L, Leenhardt A, Coumel P. 2000. [Ventricular repolarization and Holter monitoring. Effect of sympathetic blockage on the QT/RR ratio]. Arch Mal Coeur Vaiss 93:1277–1283.

    PubMed  CAS  Google Scholar 

  52. Karmazyn M, Dhalla NS. 1983. Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol 61:1207–1225.

    Article  PubMed  CAS  Google Scholar 

  53. Gerritsen ME, Printz M. 1981. Sites of prostaglandin synthesis in the bovine heart and isolated bovine coronary microvessels. Circ Res 49:1152–1163.

    Article  PubMed  CAS  Google Scholar 

  54. Linssen MCJG, Engels W, Lemmens PJMR, Heijnen VVT, Van Bilsen M, Reneman RS, Van Der Vusse GJ. 1993. Production of arachidonic acid metabolites in adult rat cardiac myocytes, endothelial cells, and fibroblast-like cells. Am J Physiol 264:H973–H982.

    PubMed  CAS  Google Scholar 

  55. Oudot F, Grynberg A, Sergiel JP. 1995. Synthesis of Eicosanoids in Cardiomyocytes during Hypoxia and Preoxygenation: Influence of the Polyunsaturated Fatty Acid Composition. Am J Physiol 268:H308–H315.

    PubMed  CAS  Google Scholar 

  56. Engels W, Van Bilsen M, De Groot MJM, P Lemmens JMR, Willemsen PHM, Reneman RS, Van Der Vusse GJ. 1990. Ischemia and reperfusion induced formation of eicosanoids in isolated rat hearts. Am J Physiol 258:H1865–H1871.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grynberg, A. (2003). Cytoprotection of Cardiac Myocytes by Polyunsaturated Fatty Acids. In: Dhalla, N.S., Chockalingam, A., Berkowitz, H.I., Singal, P.K. (eds) Frontiers in Cardiovascular Health. Progress in Experimental Cardiology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0455-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0455-9_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5085-9

  • Online ISBN: 978-1-4615-0455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics