Skip to main content

Nutrition and the Brain-Heart Connection

  • Chapter
  • 159 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 9))

Summary

The various mechanisms that may explain the association between brain-heart connection and nutrition, leading to abnormal heart rate variability (HRV) and blood pressure variability (BPV) resulting into increased morbidity and mortality due to cardiovascular diseases (CVD), are reviewed. Medline search til December, 2001 and articles published in various national and international journals were reviewed. Experts working in the field were also consulted. There is compelling evidence that saturated and total fat and sedentary behaviour can enhance sympathetic activity and increase the secretion of catecholamine and serotonin, whereas omega-3 fatty acid supplementation may enhance parasympathetic activity and increase the secretion of acetylecholine in the hippocampus. While increased sympathetic activity has adverse effects on HRV and BPV, increased parasympathetic activity has beneficial effects and can directly inhibit sympathetic tone. A large body of evidence is available demonstrating that abnormal HRV measured over a 24 hour period, or for 7 days, provides information on the risk of subsequent death in subjects with and without heart disease. There is a need to study 7-day record by Holter cardiac monitoring to further elucidate the role of HRV in the pathogenesis of CVD. Meditation, beta blockers, ACE inhibitors, n-3 fatty acids, trimetazidine and oestrogen may have a beneficial influence on HRV. However, no definite and specific therapy is currently available to improve the prognosis for patients with abnormal HRV and blood pressure variability (BPV). Low HRV has been most commonly associated with a risk of arrhythmias and arrhythmic death, unstable angina, myocardial infarction, progression of heart failure and atherosclerosis. There is a need to develop a consensus on the measure of HRV for clinical purposes and whether 7-day record is necessary and practical. New analysis methods based on nonlinear dynamics may be more useful in risk stratification. More precise insight into the patho-physiological link between HRV and nutrition may be applied to clinical practice and used to direct therapy for prevention of disease risk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singh RB, Weydahl K, Otsuka K, Watanabe S, Yano H, Mori H, Ichimaru Yo, Mitsutake G. 2001. Can nutrition influence heart rate and blood pressure variability. Biomedicine and Pharmacother J 55:7–18.

    Article  Google Scholar 

  2. Halberg F, Cornelissen G, Halberg J, Fink H, Chen CH, Otsuka K, Watanabe Y, Kumagai Y, Syutkina EV, Kawasaki T, Uezono K, Zaho Z, Schewartzkoft O. 1998. Circadian hyper-Amplitude-Tension, CHAT: a disease risk syndrome of and aging medicine. JAAM 1:239–259.

    Google Scholar 

  3. Singh RB, Pella D, Neki NS, Mestutake G, Niaz MA, Rastogi SS. 2003. Mechanism of acute myocardial infarction study. Bio Med Pharmacother J 56 (in press).

    Google Scholar 

  4. Vaidya AB, Bhatt MA. 1999. Chronobiology of ischaemic heart disease events: relevance of ancient insights in human lifestyle. J Asso Phys India 47:629–630.

    CAS  Google Scholar 

  5. Mehta SR, Das S, Karloopia SD, Mathur P, Dham SK, Raghunathan D. 1998. The circadian pattern of ischaemic heart disease in Indian population. J Asso Phys India 46:767–777.

    CAS  Google Scholar 

  6. Charaka Samhita (Charka, 600 BC). 1981. Translated by Sharma PV, Chaukhambha Orientalia, Varanasi, Delhi.

    Google Scholar 

  7. Sushruta Samhita (Sushruta, 600 BC). 1989. Translated by Bhisagratna Chaukhambha Sanskrit Series Office, Varanasi Vol 1–3.

    Google Scholar 

  8. Atharveda Samhita (3000–5000 BC). 1984. William Dwight Whitney, Ed. Charles Pockwell, Lanman, Harvard Oriental Series, Motilal Banarsidass, Delhi.

    Google Scholar 

  9. Pell S, D, Allonzo CA. 1963. Acute myocardial infarction in a large industrial population. JAMA 185:831–838.

    Article  PubMed  CAS  Google Scholar 

  10. Wennerblom B, LKurje L, Karsson T, Tygesen H, Vahisalo R, Hjamarson A. 2001. Circadian variation of heart rate variability and the rate of autonomic change in the morning hours in healthy subjects and angina patients. Int J Cardiol 79:61–69.

    Article  PubMed  CAS  Google Scholar 

  11. Churisna SK, Ganelina IE. 1975. On the distribution of incidence of acute myocardial within a 24-hour period. Kardiologia 15:115–118.

    Google Scholar 

  12. WHO International Study Group. 1976. Myocardial infarction community register. In: Public Health in Europe, Copenhagen, Regional office for Europe, 5:1–232.

    Google Scholar 

  13. Christ M, Seyffart K, Wehling M. 1999. Attenuation of heart rate variability in postmenopausal women on progestin containing hormone replacement therapy. Lancet 353:1939–1940.

    Article  PubMed  CAS  Google Scholar 

  14. La Rovere MT, Bigger Jr, Marcus FL. 1998. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484.

    Article  PubMed  Google Scholar 

  15. Bigger JT Jr, Fleish JL, Steinman RC, Rolnitzsky LM, Kleiger RE, Rottman JN. 1992. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85:164–171.

    Article  PubMed  Google Scholar 

  16. Rosano GM, Patrizi R, Leonardo F, Ponkowski P, Collins P, Sarrel PM, Chierchia SL. 1996. Effect of oestrogen replacement therapy in heart rate variability and heart rate in healthy postmenopausal women. Am J Cardiol 80:815–817.

    Article  Google Scholar 

  17. Thombson DR, Blandord RL, Sutton TW, Merchant PR. 1985. Time onset of chest pain in acute myocardial infarction. Int J Cardiol 7:139–146.

    Article  Google Scholar 

  18. Willich SN, Goldberg JG, Maclure M, Petrriello I, Muller JE. 1992. Increased onset of sudden cardiac death in the first 3 hours after awakening. Am J Cardiol 70:65–68.

    Article  PubMed  CAS  Google Scholar 

  19. Becker RC, Corrao JM. 1989. Circadian variations in cardiovascular disease. Clev Clin J Med 56:676–680.

    CAS  Google Scholar 

  20. Braunwald E. 1998. Unstable angina: an etiologic approach to management. Circulation 98: 2219–2222.

    Article  PubMed  CAS  Google Scholar 

  21. Muller JE, Befler GH, Stone PH. 1989. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 4:733–740.

    Article  Google Scholar 

  22. Otsuka K (ed). 1998. Chronome and Janus-Medicine. Heart Rate Variability (HRV) and BP variability (BPV) from a view point of chronobiology and ecology. Medical Review, Tokyo, p. 213.

    Google Scholar 

  23. Chen CH, Ting CT, Lin SJ, Itsu TL, Chuo P, Kuo HS, Wang SP, Yin FCP, Chang MS. 1995. Relation between diurnal variation of blood pressure and left ventricular mass in a Chinese population. Am J Cardiol 75:1239–1243.

    Article  PubMed  CAS  Google Scholar 

  24. Otsuka K, Cornelissen G, Halberg F, Oehlert G. 1997. Excessive circadian amplitude increases risk of ischaemic stroke and nephropathy. J Med Eng Tech 21:23–30.

    Article  CAS  Google Scholar 

  25. Kumagai Y, Shiga T, Sunaga K, Conelissen G, Ebihara A, Halberg F. 1992. Usefulness of circadian amplitude of blood pressure in predicting hypertensive cardiac involvement. Chronobiologia 19: 43–58.

    PubMed  CAS  Google Scholar 

  26. Feign VL, Nititin Yu P, Vinogrodova TE. 1997. Solar and geomagnetic activities: are there associations with stroke occurrence. Cerebro Vas Dis 7:345–348.

    Article  Google Scholar 

  27. Otsuka K, Cornelissen G, Halberg F. 1997. Age, gender and fractal scaling in heart rate variability. Clin Sci 93:299–308.

    PubMed  CAS  Google Scholar 

  28. Otsuka K, Cornelissen G, Halberg F 1997. Circadian rhythmic scaling of heart rate variability in health and coronary artery disease. Clin Cardiol. 20:631–638.

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe Y, Conelissen G, Halberg F, Saito Y, Fukuda K, Otsuka K, Kikuchi T. 1996. Chronobio-metric assessment of autogenic training effects upon blood pressure and heart rate. Perceptual and Motor Skill 83:1395–1410.

    Article  CAS  Google Scholar 

  30. Tamura K, Kohna I, Saito Y, Wakasugi K, Achiwa S, Imanishi Y, Cugini P, Halberg F 1991. Antihypertensive individualized therapeutic strategy. Diffesa Sociale 6:109–124.

    Google Scholar 

  31. Manfredini R, Gallerani M, Portaluppi F, Salmi R, Fesim C. 1997. Chronobiological patterns of onset of acute cerebrovascular disease. Thromb Res 88:451–463.

    Article  PubMed  CAS  Google Scholar 

  32. Cohen MC, Rohtla KM, Lavery CE, Muller IE, Mittleman MA. 1997. Metaanalysis of the morning excess of acute myocardial infarction and sudden cardiac death. Amer J Cardiol 79: 1512–1516.

    Article  PubMed  CAS  Google Scholar 

  33. Singh RB, Niaz MA, Kartikey K, Cornelissen G, Halberg F, Otsuka K, Schwartzkoft O. 2001. Prevalence and determinants of blood pressure variability in a population of North India. Biomedicine and Pharmacother, (Abstract) 55: p. 24.

    Google Scholar 

  34. Kukreja RS, Datta BN, Chakravarti RN. 1981. Catechoamine-induced aggravation of aortic and coronary atherosclerosis in monkeys. Atherosclerosis 40:291–298.

    Article  PubMed  CAS  Google Scholar 

  35. Cugini P, Letizia C, Searvo D. 1988. The circadian rhythmicity of serum angiotensin converting enzyme: its phasic relation with circadian cycle of plasma renin and aldosterone. Chronobiologia 15:229–232.

    PubMed  CAS  Google Scholar 

  36. Veglio F, Pitrandice R, Ossola M, Vignani A, Angili A. 1997. Circadian rhythm of the angiotensin coverting enzyme activity in serum of healthy adult subjects. Chronobiologia 14:21–25.

    Google Scholar 

  37. Christensen IH, Gustenhoff P, Komp E, Aaroe I, Tofgt E, Moller I, Rasmusenn K, Dyerberg I, Schmidt EB. 1996. Effect offish oil on heart rate variability in survivors of myocardial infarction. Br Med I 312:677–678.

    Article  Google Scholar 

  38. Christensen IH, Komp E, Aaroe I, Toft E, Moller I, Rasmusen K, Dyerberg I, Schmidt EB. 1997. Fish consumption, n-3 fatty acids in cell membranes, and heart rate variability in survivors of myocardial infarction with left ventricular dysfunction. Am I Cardiol 79:1670–1672.

    Article  CAS  Google Scholar 

  39. Gudbjarnason S. 1989. Dynamics of n-3 fatty acids in phospholipids of heart muscle. I Intern Med 225(Suppl):117–128.

    Google Scholar 

  40. Singh RB, Niaz MA, Sharma IP, Kumar R, Rastogi V, Moshiri M. 1997. Randomized, double blind, placebo controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction. The Indian experiment of infarct survival. Cardiovasc Drug Ther 11:485–491.

    Article  CAS  Google Scholar 

  41. Singh RB, Wander GS, Rastogi A, Shukla PK, Mittal A, Sharma IP, Mehrotra SK, Kapoor R, Chopra RK. 1998. Randomized, double blind, placebo controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc Drug Ther 12:347–353.

    Article  CAS  Google Scholar 

  42. Pepe S, Bogdonor K, Hallaq H, Spurgeon H, Leaf A, Lakatta E. 1994. Omega-3 polyunsaturated fatty acids modulates dihydropyridine effects on L-type Ca-channels, cytosolic Ca and contraction in adult rat cardiac myocytes. Proc Natl Acad Sci USA 91:8832–8836.

    Article  PubMed  CAS  Google Scholar 

  43. Chin JPF. 1994. Marine oils and cardiovascular reactivity. Prostaglandins Leukot Essent Fatty Acids 50:211–222.

    Article  PubMed  CAS  Google Scholar 

  44. Christensen JH, Christensen MS, Toft E, Dyerberg J, Schmidt EB. 2001. Alpha-linolenic acid and heart rate variability. Nutr Metab Cardiovasc Dis 10:57–61.

    Google Scholar 

  45. Christensen JH, Skou HA, Fog L, Hansen V, Vesterlund T, Dyerberg J, Toft E, Schmidty EF. 2001. Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angio-graph. Circulation 103:623–635.

    Article  Google Scholar 

  46. Perini R, Milesi S, Fisher NM, Pendergast DR, Veicsteinas A. 2000. Heart rate variability during dynamic exercise in elderly males and females. Eur J Appl Physiol 82:8–15.

    Article  PubMed  CAS  Google Scholar 

  47. Duru F, Chandinas R, Dziekan G, Goebbels U, Myers J, Dubach P. 2000. Effect of exercise training on heart rate variability in patients with new onset left ventricular dysfunction after myocardial infarction. Am Heart J 140:157–161.

    Article  PubMed  CAS  Google Scholar 

  48. Bernardi L, Wdowczyk-Szule J, Vaenti C, Castoldi S, Passino C, Spadacini G, Sleight P. 2000. Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J Am Coll Cardiol 35:1462–1469.

    Article  PubMed  CAS  Google Scholar 

  49. Garcia-Conzalez MA, Vazquez Seisdedos C, Pallas-Areny R. 2000. Variations in breathing patterns increase low frequency contents in HRV spectra. Physiol Meas 21:417–423.

    Article  Google Scholar 

  50. Mortara A, La Rovere MT, Pinna GD, Maestri R, Capomolla S, Cobelli F. 2000. Non selective beta-adrenergic blocking agent, carvedilol, improves arterial baroflex gain and heart rate variability in patients with stable chronic heart failure. J Am Coll Cardiol 36:1612–1618.

    Article  PubMed  CAS  Google Scholar 

  51. Kruger C, Landerer V, Zugck C, Ehmke H, Kubler W, Haass M. 2000. The bradycardic agent zate-brandine enhances baroreflex sensitivity and heart rate variability in rats early after myocardial infarction. Cardiovasc Res 45:900–912.

    Article  PubMed  CAS  Google Scholar 

  52. Weydahl A, Conelissen G, Halberg F, Siegelova J, Kumagai Y, Otsuka K. 1998. Chronobiologic optimization of exercise physiology and practice guided by heart rate variability. Scripta Medica (BRNO), 71:215–230.

    Google Scholar 

  53. Korkmaz ME, Muderrisoglu H, Ulucam, Ozin B. 2000. Effects of spironolactone on heart rate variability and left ventricular systolic function in severe ischemic heart failure. Am J Cardiol 86: 649–653.

    Article  PubMed  CAS  Google Scholar 

  54. Paolisso G, Manzella D, Rizzo MR, Ragno E, Barbieri M, Varricchio G, Varricchio M. 2000. Elevated plasma fatty acid concentrations stimulate the cardiac autonomic nervous system in healthy subjects. Am J Clin Nutr 72:723–730.

    PubMed  CAS  Google Scholar 

  55. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D. 2000. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 86:309–311.

    Article  PubMed  CAS  Google Scholar 

  56. Lanza GA, Giordano A, Pristipino C, Calcagni ML, Meduri G, Trani C, Franceschini R, Crea F, Troncone L. 2000. Relationship between myocardial 1231-metaiodobenzyl-guanidine scientigraphic uptake and heart rate variability in patients with syndrome X. Ital Heart J 1:221–225.

    PubMed  CAS  Google Scholar 

  57. Paolisso G, Manzella D, Montano N, Gambradella A, Varricho M. Plasma leptin concentrations and cardiac autonomic nervous system in healthy subjects with different body weights. J Clin Endocrinol Metab 85:1810–1814.

    Google Scholar 

  58. Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. 2000. Ambient pollution and heart rate variability. Circulation 101:1267–1273.

    Article  PubMed  CAS  Google Scholar 

  59. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ for the Multicentre Post Infarction Research Group. 1987. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262.

    Article  Google Scholar 

  60. Bigger JT Jr, Fleiss JL, Rolnitzky LM, Steinman RC. 1993. Frequency domain measures of heart period variability to assess risk of late myocardial infarction. J Am Coll Cardiol 21:296–304.

    Article  Google Scholar 

  61. Schwartz Pl, La Rovere MT, Vanoli E. 1992. Autonomic nervous system and sudden cardiac death: experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85(Suppl 1):77–91.

    Google Scholar 

  62. Schwartz Pl, Billman GE, Stone HL. 1984. Autonomic mechanisms in ventricular fibriliation induced by myocardial ischemia during exercise in dogs with a healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 69:780–790.

    Article  Google Scholar 

  63. Bonnemeier H, Hartmann F, Wiegant UK, Irmer C, Kurz T, Tolg R, Katus HA, Richardt G. 2000. Heart rate variability in patients with acute myocardial infarction undergoing primary coronary angioplasty. Am J Cardiol 85:815–820.

    Article  PubMed  CAS  Google Scholar 

  64. Lucreziotti S, Gavazzi A, Scolsi L, Inserra C, Klersy C, Campana C, Ghio S, Vanoli E, Tavazzi L. 2000. Five-minute recording of heart rate variability in severe chronic heart failure: correlates with right ventricular function and prognostic implications. Am Heart J 139:1088–1095.

    Article  PubMed  CAS  Google Scholar 

  65. Stein PK, Domitrovich PP, Kleiger RE, Schechtman KB, Rottman JN. 2000. Clinical and demographic determinants of heart rate variability in patients post myocardial infarction: insights from the cardiac arrhythmia suppression trial (CAST). Clin Cardiol 23:187–194.

    Article  PubMed  CAS  Google Scholar 

  66. Otsuka K, Conelissen G, Halberg F 1996. Predictive value of blood pressure dipping and swinging with regard to vascular disease risk. Clin Drug Investag 11:20–31.

    Article  Google Scholar 

  67. Jensen-Urstadf M, Samad BA, Jensen-Ursted K, Hulting J, Ruiz H, Bouvier F, Hojer J. 2001. Risk assessment in patients with acute myocardial infarction. J Intern Med 249:527–537.

    Article  Google Scholar 

  68. Burger AJ, Aronson D 2001. Activity of neurohormonal system and its relationship to autonomic abnormalities in decompensated heart failure. J Card Fail 7:122–128.

    Article  PubMed  CAS  Google Scholar 

  69. Roch F, Pichot V, Da Costa A, Isaaz K, Costes F, Dall Acqua T, Duverney D. 2001. Chronotopic incompetence response to exercise in congestive heart failure, relationship with cardiac autonomic status. Clin Physiol 21:335–342.

    Article  Google Scholar 

  70. Aronson D, Mittleman MA, Burger AJ. 2001. Interleukin-6 levels are inversely correlated with heart rate variability in patients with decompensated heart failure. J Cardiovasc Electrophysiol 12:301–302.

    Article  Google Scholar 

  71. Beere PA, Glagov S, Zarins CK. 1984. Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226:180–182.

    Article  PubMed  CAS  Google Scholar 

  72. Kaplan JR, Manuck SB, Clarkson TB. 1987. The influence of heart rate on coronary atherosclerosis. J Cardiovasc Pharm 10(Suppl 2):S100–S102.

    Google Scholar 

  73. Caro CG, Fitz-Gerald JM, Schroter RC. 1969. Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161.

    Article  PubMed  CAS  Google Scholar 

  74. Myerburg RJ, Kessler KM, Castellanos A. 1992. Sudden cardiac death. Structure, function, and time-dependence of risk. Circulation 85(Suppl 1):2–20.

    Google Scholar 

  75. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. 1996. Heart rate variability, Standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065.

    Article  Google Scholar 

  76. Malik M, Hantkova K, Camm AJ. 1995. Practicality of postinfarction risk assessment based on time-domain measurement of heart rate variability. In: Heart Rate Variability. Ed. Malik M, Camm AJ, 393–406. Armonk, NY: Futura.

    Google Scholar 

  77. Goldberger AL. 1996. Non linear dynamics for clinicians; chaos theory, fractals and complexity at the bedside. Lancet 347:1312–1314.

    Article  PubMed  CAS  Google Scholar 

  78. Goldberger AL, West BJ. 1987. Fractals in physiology and medicine. Yale J Biol Med 60:421–435.

    PubMed  CAS  Google Scholar 

  79. Camm AJ, Karam R, Pratt CM. 1998. The azimilide post-infarct survival evaluation (ALIVE) trial. Am J Cardiol 81:35–39.

    Article  Google Scholar 

  80. Nisam S, Mower M. 1998. ICD trials; an extraordinary means of determining patients risk? PACE 21:1341–1346.

    Article  PubMed  CAS  Google Scholar 

  81. Storck N, Ericson M, Lindblad L, Jensen-Urstad M. 2001. Automatic computerized analysis of heart rate variability with digital filtering of ectopic beats. Clin Physiol 21:15–24.

    Article  PubMed  CAS  Google Scholar 

  82. Yee KM, Pringle SD, Struthers A. 2001. Circadian variation in the effects of aldosterone blockade on heart rate variability and QT dispersion in congestive heart failure. J Am Coll Cardiol 37: 1800–1807.

    Article  PubMed  CAS  Google Scholar 

  83. Aronson D, Burger AJ. 2001. Effect of beta blockade on autonomic modulation of heart rate and neurohormonal profile in decompensated heart failure. Ann Noninvasive Electrocardiol 6:98–106.

    Article  PubMed  CAS  Google Scholar 

  84. Lin LY, Lin JL, Du CC, Lai LP, Tseng Yz, Huang SK. 2001. Reversal of deteriorated fractal behaviour of heart rate variability by beta-blocker therapy in patients with advanced congestive heart failure. Cardiovasc Electrophysiol 12:33–35.

    Article  Google Scholar 

  85. Ulgen MS, Akdemir O, Toprak N. 2001. The effects of trimetazidine on heart rate variability and signal-averaged electrocardiography in the early period of acute myocardial infarction. Int J Cardiol 77:255–262.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R.B. et al. (2003). Nutrition and the Brain-Heart Connection. In: Dhalla, N.S., Chockalingam, A., Berkowitz, H.I., Singal, P.K. (eds) Frontiers in Cardiovascular Health. Progress in Experimental Cardiology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0455-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0455-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5085-9

  • Online ISBN: 978-1-4615-0455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics