Skip to main content

Mutational Profiles and Molecular Etiologies of Hypertrophic Cardiomyopathy and Dilated Cardiomyopathy in Asian Populations

  • Chapter
Frontiers in Cardiovascular Health

Summary

Idiopathic cardiomyopathy (ICM) had been defined as the cardiac disease of unknown etiology. There are two major clinical phenotypes of ICM; hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). During the last decade, a considerable progress has been made for identifying gene mutations as the causes of HCM and DCM. We have searched for mutations in the known disease genes for ICM in Japanese and Korean patients with HCM or DCM, and identified a considerable number of disease-related mutations in a portion of HCM patients and a few DCM patients. In addition, our recent candidate gene approach has revealed that mutations in the titin gene cause both HCM and DCM, and functional analyses of the titin mutations have suggested that the HCM-related and DCM-related mutations would lead to stiff sarcomere and loose sarcomere, respectively. The notion that HCM is a disease of stiff sarcomere can also be supported by that most of the HCM-related mutations in the genes for sarcomeric proteins increase the calcium sensitivity of muscle contraction, i.e. cardiac muscles are contracted under relatively low calcium concentration. In other words, HCM-related sarcomere mutations may lead to relatively stiff sarcomere under physiological condition. On the other hand, most of the DCM-related mutations in Z-disc elements would manifest with loose sarcomere, which may lead to relatively inefficient transmission of power through the Z-disc, then, DCM at least in part can be considered as a disease of loose sarcomere. In this concept, cardiac hypertrophy in HCM can also be considered as compensatory response against the excess overload, and the decompensation could be occurred later, while DCM can be considered as to be with less compensatory hypertrophy and earlier decompensation than HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seidman JG, Seidman C. 2001. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567.

    Article  PubMed  CAS  Google Scholar 

  2. Satoh M, Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. 1999. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun 262:411–417.

    Article  PubMed  CAS  Google Scholar 

  3. Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Ueda K, Hohta S, Nouchi T, Takahashi M, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A. 2002. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291:385–393.

    Article  PubMed  CAS  Google Scholar 

  4. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG. 1990. A molecular basis for familial hypertrophic cardiomyopathy: a beta-cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006.

    Article  PubMed  CAS  Google Scholar 

  5. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE. 1994. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy. Cell 77:701–712.

    Article  PubMed  Google Scholar 

  6. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. 1995. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet 11:434–437.

    Article  PubMed  CAS  Google Scholar 

  7. Bonne G, Carrier L, Bercovici J, et al. 1995. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with hypertrophic cardiomyopathy. Nature Genet 11:438–440.

    Article  PubMed  CAS  Google Scholar 

  8. Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND. 1996. Mutations in either essential or regulatory light chain of myosins are associated with a rare myopathy in human heart and skeletal muscle. Nature Genet 13:63–69.

    Article  PubMed  CAS  Google Scholar 

  9. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T. 1997. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet 16: 379–382.

    Article  PubMed  CAS  Google Scholar 

  10. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD. 1999. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103:R39–R43.

    Article  PubMed  CAS  Google Scholar 

  11. Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H. 2001. Mutations in the gamma 2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10:1215–1220.

    Article  PubMed  CAS  Google Scholar 

  12. MacRae CA, Ghaisas N, Kass S, et al. 1995. Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest 96:1216–1220.

    Article  PubMed  CAS  Google Scholar 

  13. Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, Kanter RJ, McGarry K, Seidman JG, Seidman CE. 2002. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109:357–362.

    PubMed  CAS  Google Scholar 

  14. Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, Aletras AH, Wen H, Epstein ND. 2001. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107:631–641.

    Article  PubMed  CAS  Google Scholar 

  15. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE. 2002. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 105:446–451.

    Article  PubMed  CAS  Google Scholar 

  16. Watkins H, Rosenzweig A, Hwang DS, Levi T, McKenna W, Seidman CE, Seidman JG. Characteristics and prognostic implicaions of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 326:1108–1114.

    Google Scholar 

  17. Watkins H, McKenna WJ, Thierfelder L, et al. 1995. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 332:1058–1064.

    Article  PubMed  CAS  Google Scholar 

  18. Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. 1998. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 338:1248–1257.

    Article  PubMed  CAS  Google Scholar 

  19. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM. 1993. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58.

    Article  PubMed  CAS  Google Scholar 

  20. Mestroni L, Rocco C, Gregori D, Sinagra G, Di Lenarda A, Miocic S, Vatta M, Pinamonti B, Muntoni F, Caforio AL, McKenna WJ, Falaschi A, Giacca M, Camerini. 1999. Familial dilated cardiomyopathy: evidence for genetic heterogeneity. J Am Coll Cardiol 34:181–190.

    Article  PubMed  CAS  Google Scholar 

  21. Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, McDonough B. 1999. Missense mutations in the rod domain of the lamin A/C gene as the causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724.

    Article  PubMed  CAS  Google Scholar 

  22. Li D, Tapscoft T, Gonzalez O, Burch PE, Quinones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R. 1999. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100:461–464.

    Article  PubMed  CAS  Google Scholar 

  23. Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L, Bowles NE, Towbin JA. 2000. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 106:655–662.

    Article  PubMed  CAS  Google Scholar 

  24. Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM. 2002. Metavin-culin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105:431–437.

    Article  PubMed  CAS  Google Scholar 

  25. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752.

    Article  PubMed  CAS  Google Scholar 

  26. Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Seidman CE. 2000. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343:1688–1696.

    Article  PubMed  CAS  Google Scholar 

  27. Olson TM, Kishimoto NY, Whitby FG, Michels VV. 2001. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33:723–732.

    Article  PubMed  CAS  Google Scholar 

  28. Taroni F, Verderio E, Fiorucci S, Cavadini P, Finocchiaro G, Uziel G, Lamantea E, Gellera C, DiDonato S. Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc Natl Acad Sci USA 89:8429–8433.

    Google Scholar 

  29. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP. 2000. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9:2761–2766.

    Article  PubMed  CAS  Google Scholar 

  30. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, Norman M, Baboonian C, Jeffery S, McKenna WJ. 2000. Identification of a deletion in plakoglobin in arrhyth-mogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355:2119–2124.

    Article  PubMed  CAS  Google Scholar 

  31. Towbin JA, Hejtmancik JF, Brink P, Gelb B, Zhu XM, Chamberlain JS, McCabe ER, Swift M. 1993. X-linked dilated cardiomyopathy. Molecular evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87:1854–1865.

    Article  PubMed  CAS  Google Scholar 

  32. Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. 1996. A novel X-linked gene, G4.5, is responsible for Barth syndrome. Nature Genet 12:385–389.

    Article  PubMed  CAS  Google Scholar 

  33. Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Laheit S, Frenneaux M, Thierfelder L. 2002. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genet 30:201–204.

    Article  PubMed  CAS  Google Scholar 

  34. Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, Fishman MC. 2002. Cardiomyopathy in zebrafish due to mutation in alternatively spliced exon of titin. Nature Genet 30:205–209.

    PubMed  CAS  Google Scholar 

  35. Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. 2002. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 79:146–149.

    Article  PubMed  CAS  Google Scholar 

  36. Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Laheit S. 1998. The NH2 terminus of titin spans the Z-disc: interaction with a novel 19-kD ligand (T-cap) is required for sarcomere integrity. J Cell Biol 143:1013–1027.

    Article  PubMed  CAS  Google Scholar 

  37. Yanaga F, Morimoto S, Ohtsuki I. 1999. Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. J Biol Chem 274:8806–8812.

    Article  PubMed  CAS  Google Scholar 

  38. Morimoto S, Lu QW, Harada K, Takahashi-Yanaga F, Minakami R, Ohta M, Sasaguri T, Ohtsuki I. 2002. Ca (2+)-desensitizing effect of a deletion mutation delta K210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc Natl Acad Sci USA 99:913–918.

    Article  PubMed  CAS  Google Scholar 

  39. Mues A, van derVen PF, Young P, Furst DO, Gautel M. 1998. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with titin. FEBS Lett 428: 111–114.

    Article  PubMed  CAS  Google Scholar 

  40. Badorf F C, Lee GH, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU. 1999. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Med 5:320–326, 1999.

    Google Scholar 

  41. Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P. 1997. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Kimura M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kimura, A. et al. (2003). Mutational Profiles and Molecular Etiologies of Hypertrophic Cardiomyopathy and Dilated Cardiomyopathy in Asian Populations. In: Dhalla, N.S., Chockalingam, A., Berkowitz, H.I., Singal, P.K. (eds) Frontiers in Cardiovascular Health. Progress in Experimental Cardiology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0455-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0455-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5085-9

  • Online ISBN: 978-1-4615-0455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics