Does Reperfusion Cause Any Injury to the Myocardium?

  • Petr Ostadal
  • Irena Zdobnicka
  • Naranjan S. Dhalla
Part of the Progress in Experimental Cardiology book series (PREC, volume 9)


Enormous effort has been made during the past three decades to explain the pathologic events which occur upon reperfusion of the previously ischemic heart in animals. Experimental studies have described potentially harmful effects of reperfusion, a phenomenon called “reperfusion injury”. It is based on the observations in different animals that some myocardial damage occurs upon reperfusion if it is not instituted within a certain time-period of the ischemic insult. Although reperfusion has been shown as the most efficient treatment strategy for acute myocardial infarction in humans, arrhythmias and myocardial depression (cardiac stunning) have been observed upon reperfusion in patients with acute myocardial infarction; these harmful effects are temporary. In fact, the hard-core evidence that reperfusion causes myocardial injury in human is lacking and this is primarily due to the fact that a host of drugs are administered before inducing reperfusion by angioplasty, thrombolytic therapy or coronary bypass surgery. The purpose of this article is to summarize the current knowledge regarding the relationship between reperfusion and reperfusion injury and their implications in clinical management. De spite abundant information concerning the reperfusion-related injury, it is not clear whether reperfusion causes further injury to the ischemia-damaged cardiomyocytes or it is the delayed effect of ischemia per se. In addition, modifications of the reperfusion conditions have not been shown to improve the long-term damage to the myocardium. Thus, some caution should be exercised in interpreting the data from animal experiments to human until long-term results on ischemia-reperfusion injury are available.

Key words

reperfusion myocardial ischemia acute myocardial infarction cardiac protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tennant R, Wiggers C. 1935. The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361.Google Scholar
  2. 2.
    Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. 1960. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Pathology 70:68–78.Google Scholar
  3. 3.
    Hearse DJ, Humphrey SM, Chain EB. 1973. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5:395–407.PubMedCrossRefGoogle Scholar
  4. 4.
    Hearse DJ, Humphrey SM, Bullock GR. 1978. The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 10:641–668.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenkranz ER, Buckberg GD. 1983. Myocardial protection during surgical coronary reperfusion. J Am Coll Cardiol 1:1235–1246.PubMedCrossRefGoogle Scholar
  6. 6.
    Park JL, Lucchesi BR. 1999. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 68:1905–1912.PubMedCrossRefGoogle Scholar
  7. 7.
    Piper HM, Garcia-Dorado D, Ovize M. 1998. A fresh look at reperfusion injury. Cardiovasc Res 38: 291–300.PubMedCrossRefGoogle Scholar
  8. 8.
    Dhalla NS, Golfman L, Takeda S, Takeda N, Nagano M. 1999. Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review. Can J Cardiol 15:587–593.PubMedGoogle Scholar
  9. 9.
    Bolli R. 1990. Mechanism of myocardial “stunning”. Circulation 82:723–738.PubMedCrossRefGoogle Scholar
  10. 10.
    Bolli R, Marban E. 1999. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634.PubMedGoogle Scholar
  11. 11.
    Piper HM, Garcia-Dorado D. 1999. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 68:1913–1919.PubMedCrossRefGoogle Scholar
  12. 12.
    Hearse DJ, Humphrey SM, Boink AB, Ruigrok TJ. 1978. The calcium paradox: metabolic, electrophysiological, contractile and ultrastructural characteristics in four species. Eur J Cardiol 7:241–256.PubMedGoogle Scholar
  13. 13.
    Ladilov YV, Siegmund B, Piper HM. 1995. Protection of reoxygenated cardiomyocytes against hyper-contracture by inhibition of Na+/H+ exchange. Am J Physiol 268:H1531–H1539.PubMedGoogle Scholar
  14. 14.
    Bolli R. 1998. Causative role of oxyradicals in myocardial stunning: a proven hypothesis. A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction. Basic Res Cardiol 93:156–162.PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrari R, Ceconi C, Curello S, Cargnoni A, De Giuli F, Visioli O. 1992. Occurrence of oxidative stress during myocardial reperfusion. Mol Cell Biochem 111:61–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Ferrari R, Alfieri O, Curello S, Ceconi C, Cargnoni A, Marzollo P, Pardini A, Caradonna E, Visioli O. 1990. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 81:201–211.PubMedCrossRefGoogle Scholar
  17. 17.
    Jeroudi MO, Hartley CJ, Bolli R. 1994. Myocardial reperfusion injury: role of oxygen radicals and potential therapy with antioxidants. Am J Cardiol 73:2B–7B.PubMedCrossRefGoogle Scholar
  18. 18.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N. 2000. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456.PubMedCrossRefGoogle Scholar
  19. 19.
    Dixon IMC, Kaneko M, Hata T, Panagia V, Dhalla NS. 1990. Alterations in cardiac membrane Ca2+ transport during oxidative stress. Mol Cell Biochem 99:125–133.PubMedCrossRefGoogle Scholar
  20. 20.
    Shao Q, Matsubara T, Bhatt SK, Dhalla NS. 1995. Inhibition of cardiac sarcolemma Na+−K+ ATPase by oxyradical generating systems. Mol Cell Biochem 147:139–144.PubMedCrossRefGoogle Scholar
  21. 21.
    Mochizuki S, Jiang C. 1998. Na+/Ca++ exchanger and myocardial ischemia/reperfusion. Jpn Heart J 39:707–714.PubMedCrossRefGoogle Scholar
  22. 22.
    Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS. 1999. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol 277(2 Pt 2):H584–H594.PubMedGoogle Scholar
  23. 23.
    Netticadan T, Temsah R, Osada M, Dhalla NS. 1999. Status of Ca2+/calmodulin protein kinase phosphorylation of cardiac SR proteins in ischemia-reperfusion. Am J Physiol 277:C384–C391.PubMedGoogle Scholar
  24. 24.
    Lamers JMJ, Duncker DJ, Bezstarosti K, McFalls EO, Sassen LM, Verdouw PD. 1993. Increased activity of the sarcoplasmic reticular calcium pump in porcine stunned myocardium. Cardiovasc Res 27:520–524.PubMedCrossRefGoogle Scholar
  25. 25.
    Dhalla NS, Panagia V, Singal PK, Makino N, Dixon IMC, Eyolfson DA. 1988. Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. J Mol Cell Cardiol 20(Suppl 2):3–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W. 1992. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res 71:1123–1130.PubMedCrossRefGoogle Scholar
  27. 27.
    Dhalla NS, Temsah R. 2001. Sarcoplasmic reticulum and cardiac oxidative stress: an emerging target for heart disease. Emerging Therapeutic Targets 5:205–217.CrossRefGoogle Scholar
  28. 28.
    Dhalla NS, Temsah RM, Netticadan T. 2000. Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673.PubMedCrossRefGoogle Scholar
  29. 29.
    Ambrosio G, Zweier JL, Flaherty JT. 1991. The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol 23:1359–1374.PubMedCrossRefGoogle Scholar
  30. 30.
    Lucas DT, Szweda LI. 1998. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 95:510–514.PubMedCrossRefGoogle Scholar
  31. 31.
    Griffiths EJ, Halestrap AP. 1995. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98.PubMedGoogle Scholar
  32. 32.
    Wanagat J, Cao Z, Pathare P, Aiken JM. 2001. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15:322–332.PubMedCrossRefGoogle Scholar
  33. 33.
    Ozawa T, Sugiyama S, Tanaka M, Hattori K. 1991. Mitochondrial DNA mutations and disturbances of energy metabolism in myocardium. Jpn Circ J 55:1158–1164.PubMedCrossRefGoogle Scholar
  34. 34.
    Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A. 2001. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535.PubMedCrossRefGoogle Scholar
  35. 35.
    Shlafer M, Kane PF, Wiggins VY, Kirsh MM. 1982. Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardiac ischemic injury. Circulation 66:185–192.Google Scholar
  36. 36.
    Bohr VA, Dianov GL. 1999. Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie 81:155–160.PubMedCrossRefGoogle Scholar
  37. 37.
    Yoshida K, Sorimachi Y, Fujiwara M, Hironaka K. 1995. Calpain is implicated in rat myocardial injury after ischemia or reperfusion. Jpn Circ J 59:40–48.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R. 2000. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101: 1833–1839.PubMedCrossRefGoogle Scholar
  39. 39.
    Shibata T, Yamamoto F, Suehiro S, Kinoshita H. 1997. Effects of protease inhibitors on postischemic recovery of the heart. Cardiovasc Drugs Ther 11:547–556.PubMedCrossRefGoogle Scholar
  40. 40.
    Yaoita H, Ogawa K, Maehara K, Maruyama Y. 1998. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281.PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshida Y, Shiga T, Imai S. 1990. Degradation of sarcoplasmic reticulum calcium-pumping ATPase in ischemic-reperfused myocardium: role of calcium-activated neutral protease. Basic Res Cardiol 85:495–507.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida K, Inui M, Harada K, Saido TC, Sorimachi Y, Ishihara T, Kawashima S, Sobue K. 1995. Reperfusion of rat heart after brief ischemia induces proteolysis of calspectin (nonerythroid spectrin or fodrin) by calpain. Circ Res 77:603–610.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumura Y, Kusuoka H, Inoue M, Hori M, Kamada T. 1993. Protective effect of the protease inhibitor leupeptin against myocardial stunning. J Cardiovasc Pharmacol 22:135–142.PubMedCrossRefGoogle Scholar
  44. 44.
    Hansen PR. 1995. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91: 1872–1885.PubMedCrossRefGoogle Scholar
  45. 45.
    Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR. 1983. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023.PubMedCrossRefGoogle Scholar
  46. 46.
    Hawkins HK, Entman ML, Zhu JY, Youker KA, Berens K, Dore M, Smith CW. 1996. Acute inflammatory reaction after myocardial ischemic injury and reperfusion. Development and use of a neutrophil-specific antibody. Am J Pathol 148:1957–1969.PubMedGoogle Scholar
  47. 47.
    Frangogiannis NG, Youker  KA, Rossen RD, Gwechenberger  M,  Lindsey MH, Mendoza LH, Michael LH, Ballantyne CM, Smith CW, Entman ML. 1998. Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol 30:2567–2576.PubMedCrossRefGoogle Scholar
  48. 48.
    Kishimoto TK, Rothlein R. 1994. Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites. Adv Pharmacol 25:117–169.PubMedCrossRefGoogle Scholar
  49. 49.
    Simpson PJ, Todd RF, III, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. 1988. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CDllb) that inhibits leukocyte adhesion. J Clin Invest 81:624–629.PubMedCrossRefGoogle Scholar
  50. 50.
    Hill JH, Ward PA. 1969. C3 leukotactic factors produced by a tissue protease. J Exp Med 130: 505–518.PubMedCrossRefGoogle Scholar
  51. 51.
    Yasojima K, Schwab C, McGeer EG, McGeer PL. 1998. Human heart generates complement proteins that are upregulated and activated after myocardial infarction. Circ Res 83:860–869.PubMedCrossRefGoogle Scholar
  52. 52.
    Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, McGeer PL. 1998. Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion. Circ Res 82:1224–1230.PubMedCrossRefGoogle Scholar
  53. 53.
    Pinckard RN, Olson MS, Kelley RE, DeHeer DH, Palmer JD, O’Rourke RA, Goldfein S. 1973. Antibody-independent activation of human C1 after interaction with heart subcellular membranes. J Immunol 110:1376–1382.PubMedGoogle Scholar
  54. 54.
    Ward PA, Zvaifler NJ. 1971. Complement-derived leukotactic factors in inflammatory synovial fluids of humans. J Clin Invest 50:606–616.PubMedCrossRefGoogle Scholar
  55. 55.
    Rossen RD, Laughter AH, Orson FM, Flagge FP, Cashaw JL, Sumaya CV. 1985. Human peripheral blood monocytes release a 30,000 dalton factor (30 KD MF) that stimulates immunoglobulin production by activated B cells. J Immunol 135:3289–3297.PubMedGoogle Scholar
  56. 56.
    Linden J. 1994. Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15:298–306.PubMedCrossRefGoogle Scholar
  57. 57.
    BirdsaU HH, Green DM, Trial J, Youker KA, Burns AR, MacKay CR, LaRosa GH, Hawkins HK, Smith CW, Michael LH, Entman ML, Rossen RD. 1997. Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation 95:684–692.CrossRefGoogle Scholar
  58. 58.
    Kumar AG, Ballantyne CM, Michael LH, Kukielka GL, Youker KA, Lindsey ML, Hawkins HK, Birdsall HH, MacKay CR, LaRosa GJ, Rossen RD, Smith CW, Entman ML. 1997. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation 95:693–700.PubMedCrossRefGoogle Scholar
  59. 59.
    Kukielka GL, Smith CW, LaRosa GJ, et al. 1995. Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Invest 95:89–103.PubMedCrossRefGoogle Scholar
  60. 60.
    Kukielka GL, Smith CW, Manning AM, Youker KA, Michael LH, Entman ML. 1995. Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury. Circulation 92:1866–1875.PubMedCrossRefGoogle Scholar
  61. 61.
    Krug A, Du Mesnil DR, Korb G. 1996. Blood supply of the myocardium after temporary coronary occlusion. Circ Res 19:57–62.CrossRefGoogle Scholar
  62. 62.
    Hearse DJ, Maxwell L, Saldanha C, Gavin JB. 1993. The myocardial vasculature during ischemia and reperfusion: a target for injury and protection. J Mol Cell Cardiol 25:759–800.PubMedCrossRefGoogle Scholar
  63. 63.
    Entman ML, Smith CW. 1994. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res 28:1301–1311.PubMedCrossRefGoogle Scholar
  64. 64.
    Ambrosio G, Tritto I. 1999. Reperfusion injury: experimental evidence and clinical implications. Am Heart J 138:S69–S75.PubMedCrossRefGoogle Scholar
  65. 65.
    Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T. 1996. Clinical implications of the “no reflow” phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93:223–228.PubMedCrossRefGoogle Scholar
  66. 66.
    Hearse DJ. 1990. Ischemia, reperfusion, and the determinants of tissue injury. Cardiovasc Drugs Ther 4(Suppl 4):767–776.PubMedCrossRefGoogle Scholar
  67. 67.
    Hearse DJ, Bolli R. 1992. Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res 26:101–108.PubMedCrossRefGoogle Scholar
  68. 68.
    Ferrari R, Hearse DJ. 1997. Reperfusion injury: Does it exist and does it have clinical relevance? J Thromb Thrombolysis 4:25–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Tanaka K, Hearse DJ. 1988. Reperfusion-induced arrhythmias in the isolated rabbit heart: characterization of the influence of the duration of regional ischemia and the extracellular potassium concentration. J Mol Cell Cardiol 20:201–211.PubMedCrossRefGoogle Scholar
  70. 70.
    Manning AS, Hearse DJ. 1984. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol 16:497–518.PubMedCrossRefGoogle Scholar
  71. 71.
    Goldberg S, Greenspon AJ, Urban PL, Muza B, Berger B, Walinsky P, Maroko PR. 1983. Reperfusion arrhythmia: a marker of restoration of antegrade flow during intracoronary thrombolysis for acute myocardial infarction. Am Heart J 105:26–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Hackett D, McKenna W, Davies G, Maseri A. 1990. Reperfusion arrhythmias are rare during acute myocardial infarction and thrombolysis in man. Int J Cardiol 29:205–213.PubMedCrossRefGoogle Scholar
  73. 73.
    Bolli R. 1998. Basic and clinical aspects of myocardial stunning. Prog Cardiovasc Dis 40:477–516.PubMedCrossRefGoogle Scholar
  74. 74.
    Ferrari R, La Canna G, Giubbini R, Milan E, Ceconi C, De Giuli F, Berra P, Alfieri O, Visioli O. 1994. Left ventricular dysfunction due to stunning and hibernation in patients. Cardiovasc Drugs Ther 8(Suppl 2):371–380.PubMedCrossRefGoogle Scholar
  75. 75.
    Bolli R. 1992. Postischemic myocardial “stunning”: pathogenesis, pathophysiology, and clinical relevance. In: Yellon DM, Jennings RB, editors. Myocardial Protection: The Pathophysiology of Reperfusion and Reperfusion Injury. New York: Raven Press, 105–149.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Petr Ostadal
    • 1
  • Irena Zdobnicka
    • 2
    • 3
  • Naranjan S. Dhalla
    • 2
    • 3
  1. 1.Department of Internal Medicine University Hospital MotolCharles University PragueCzech Republic
  2. 2.Institute of Cardiovascular SciencesSt. Boniface General Hospital Research CentreWinnipegCanada
  3. 3.Department of PhysiologyFaculty of Medicine University of ManitobaWinnipegCanada

Personalised recommendations