Assessment of Myocardial Injury Using Magnetic Resonance Imaging

  • Ganghong Tian
  • John Mark
  • Bo Xiang
  • Guangping Dai
  • Gang Li
  • Jiankang Sun
  • Robert Corne
  • Normand Lazarow
  • Roxanne Deslauriers
Part of the Progress in Experimental Cardiology book series (PREC, volume 10)

Summary

Left ventricular dysfunction may be the result of reversible or irreversible myocardial injury. Because there is significant difference in prognosis and clinical management for patients with damaged but viable myocardium and for those with nonviable myocardium, distinguishing the status of the myocardium has significant clinical relevance. One avenue that has been explored is magnetic resonance (MR) imaging in conjunction with MR contrast agents. However, there are conflicting reports on the accuracy of the common MR techniques, T1- and T2★-weighted imaging, as indicators of myocardial viability. To improve the reliability, we have developed a new MR imaging method, interleaved T1-T2★ imaging. This new approach monitors both T1 and T2★ signal intensities simultaneously during the first pass of an MR contrast agent. The interleaved T1-T2★ imaging separates viable from nonviable myocardium based on the contrast-induced changes in T1 and T2★ signals, which is related to the integrity of the cell membrane. Using isolated pig hearts we have found that the signal-time courses of the interleaved-T1-T2★ images obtained from normal myocardium are significantly different from those obtained from infarct rim and infarct core. The results of this study suggest that the integrity of cell membrane can be reliably assessed using the interleaved T1-T2★ imaging in conjunction with an MR contrast agent. Moreover, use of the new MR approach differentiates viable from nonviable myocardial viability.

Key words

Myocardial infarction magnetic resonance imaging contrast reagent pig heart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter B. 1998. Cellular mechanisms of ischemic myocardial damage. In: Kaski J and Holt D. Eds. Myocardial Damage. Early Detection by Novel Biochemical Markers. Kluwer Academic Publishers, pp 1–16.CrossRefGoogle Scholar
  2. 2.
    Agati L, Autore C, Iacoboni C, Castaldo M, Veneroso G, Voci P, Fedele F, Dagianti A. 1998. The complex relation between myocardial viability and functional recovery in chronic left ventricular dysfunction. Am J Cardiol 81(12A):33G–35G.PubMedCrossRefGoogle Scholar
  3. 3.
    Huitink JM, Visser FC, Bax JJ, Visser CA. 1995. Detection of viability after myocardial infarction: available techniques and clinical relevance—a review. International J Cardiol 51:253–266.CrossRefGoogle Scholar
  4. 4.
    Previtali M, Fetiveau R, Lanzarini L, Cavalotti C, Klersy C. 1998. Prognostic value of myocardial viability and ischemia detected by dobutamine stress echocardiography early after acute myocardial infarction treated with thrombolysis. J Am Coll Cardiol 32(2):380–386.PubMedCrossRefGoogle Scholar
  5. 5.
    Pierard LA, Hoffer EP. 1998. Role of stress echocardiography in heart failure. Am J Cardiol 81(12A): 111G–114G.PubMedCrossRefGoogle Scholar
  6. 6.
    Ajisaka R, Watanabe S, Masuoka T, Yamanouchi T, Saitoh T, Toyama M, Takeda T, Itai Y, Sugishita Y. 1998. Relationship between normalization of negative T waves on exercise ECG and residual myocardial viability in patients with previous myocardial infarction and no post-infarction angina. Jpn Circ J 62(3): 153–159.PubMedCrossRefGoogle Scholar
  7. 7.
    Casans-Tormo I, Gomez-Aldaravi R, Bodi-Peris V, Sanchis-Fores J, Ciudad-Platero J, Insa-Perez L, Manjon-Soriano J. 1998. Determination of ejection fraction and left ventricular fraction using isotopic ventriculography and bidimensional echocardiography. Comparison with contrast ventriculography. Rev Esp Cardiol 51(Suppl 1):10–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Flotats-Giralt A, Carrio-Gasset I, Estorch-Cabrera M, Berna-Roqueta L, Catafau-Alcantara AM, Mari-Aparici C, Ballester-Rodes M. 1998. Evaluation of myocardial viability using perfusion cardiac SPECT 201-thallium rest/redistribution, 201-thallium rest/reinjection and technetium 99 m tetrofosmin rest/postnitrates. Rev Esp Cardiol 51 (Suppl 1):45–52.PubMedGoogle Scholar
  9. 9.
    Cloninger KG, Puey EG, Garcia EV, Roubin GS, Robbins WL, Nody A, De Pasquale EE, Berger HJ. 1988. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: an overestimation of myocardial scarring. J Am Coll Cardiol 12: 955–963.PubMedCrossRefGoogle Scholar
  10. 10.
    Ryan T, Tarver RD, Duerck JL, Sawada SG, Hollenkamp NC. 1990. Distinguishing viable from infarcted myocardium after experimental ischemia and reperfusion by using nuclear magnetic resonance imaging. J Am Cardiol 15:1355–1364.CrossRefGoogle Scholar
  11. 11.
    Iskandrian AS, Heo J, Schelbert HR. 1996. Myocardial viability: Methods of assessment and clinical relevance. Am Heart J 132:1226–1235.PubMedCrossRefGoogle Scholar
  12. 12.
    Pereira RS, Prato FS, Wisenberg G, Sykes J. 1996. The determination of myocardial viability using Gd-DTPA in a canine model of acute myocardial ischemia and reperfusion. Magn Reson Med 36: 684–693.PubMedCrossRefGoogle Scholar
  13. 13.
    Pereira RS, Prato FS, Sykes J, Wisenberg G. 1999. Assessment of myocardial viability using MRI during a constant infusion of Gd-DTPA: Further studies at early and late periods of reperfusion. Magn Reson Med 42:60–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. 1990. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323:1593–1600.PubMedCrossRefGoogle Scholar
  15. 15.
    Path G, Robitaille PM, Merkle H, Tristani M, Zhang J, Garwood M, From AHL, Bache RJ, Ugurbil K. 1990. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 67:660–673.PubMedCrossRefGoogle Scholar
  16. 16.
    Yabe T, Mitsunami K, Okada M, Monkavva S, Inubushi T, Kinoshita M. 1994. Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation 89: 1709–1716.PubMedCrossRefGoogle Scholar
  17. 17.
    Geskin G, Kramer CM, Rogers WJ, Theobald TM, Pakstis D, Hu YL, Reichek N. 1998. Quantitative assessment of myocardial viability after infarction by dobutamine magnetic resonance imaging. Circulation 98:217–223.PubMedCrossRefGoogle Scholar
  18. 18.
    Croisille P, Moore CC, Judd RM, Lima JAC, Arai M, McVeigh ER, Becker LC, Zerhouni EA. 1999. Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 99:284–291.PubMedCrossRefGoogle Scholar
  19. 19.
    Lima JAC, Ferrari VA, Reichek N, Kramer CM, Palmon L, Llaneras MR, Tallant B, Young AA, Axel L. 1995. Segmental motion and deformation of transmurally infarcted myocardium in acute postin-farcted period. Am J Physiol 268(Heart Circ Physiol 37):H1304–H1323.PubMedGoogle Scholar
  20. 20.
    Pislaru SV, Ni Y, Pislaru C, Bosnians H, Miao Y, Bogaert J, Dymarkowski S, Semmler W, Marcha G, Van de Werf FJ. 1999. Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696.PubMedCrossRefGoogle Scholar
  21. 21.
    Marchal G, Ni Y, Herijigers P, Flameng W, Petre C, Bosnians H, Yu J, Ebert W, Hilger CS, Semmler W, Baert AL. 1996. Paramagnetic metaloporphrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI. Eur Radiol 6:2–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ. Imaging of myocardial infarction: comparison of magnevist and gadophnn III in rabbits. Proceedings of the ISMRM April 2001, Galsgow, UK, pp 225.Google Scholar
  23. 23.
    Wyttenbach R, Saeed M, Wendland MF, Geschwind JF, Bremerich J, Arheden H, Higgins CB. 1999. Detection of acute myocardial ischemia using first-pass dynamics of MNDPDP on inversion recovery echoplanar imaging. J Magn Reson Imaging 9:209–214.PubMedCrossRefGoogle Scholar
  24. 24.
    Elst LV, Colet JM, Muller RN. 1997. Spectroscopic and metabolic effects of MnC12 and MnDPDP on the isolated and perfused rat heart. Invest Radiol 32:581–588.CrossRefGoogle Scholar
  25. 25.
    Bremerich J, Saeed M, Arheden H, Higgins CB, Wendland MF. 2000. Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530.PubMedGoogle Scholar
  26. 26.
    Kim RJ, Lima AC, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM. 1997. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95:1877–1885.PubMedCrossRefGoogle Scholar
  27. 27.
    Mühler A. 1995. Assessment of myocardial perfusion using contrast-enhanced MR imaging: current status and future developments. MAGMA 2:21–33.CrossRefGoogle Scholar
  28. 28.
    Mühler A. 1995. Assessment of myocardial perfusion using contrast-enhanced MR imaging: current status and future developments. MAGMA 3:21–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Keennan RR, Zhong J, Gore JC. 1994. Intravascular susceptibility contrast mechanisms in tissue. Magn Reson Med 31:9–21CrossRefGoogle Scholar
  30. 30.
    Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB. 2001. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876.PubMedCrossRefGoogle Scholar
  31. 31.
    Edelman RR, Li W. 1994. Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology Mar; 190(3):771–777Google Scholar
  32. 32.
    Donahue KM, Burstein D. 1993. Proton exchange rates in myocardial tissue with Gd-DTPA administration. SMRM Annual Meeting, New York.Google Scholar
  33. 33.
    Keenan RP, Zhong J, Gore JC. 1991. On the relative importance of paramagnetic relaxation and diffusion-mediated susceptibility losses in tissues. Magn Reson Med 22:197–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Ganghong Tian
    • 1
    • 2
  • John Mark
    • 1
    • 2
  • Bo Xiang
    • 1
  • Guangping Dai
    • 1
  • Gang Li
    • 1
    • 2
  • Jiankang Sun
    • 1
  • Robert Corne
    • 3
  • Normand Lazarow
    • 4
  • Roxanne Deslauriers
    • 1
    • 2
  1. 1.Institute for BiodiagnosticsNational Research Council of CanadaWinnipegCanada
  2. 2.Department of PhysiologyCanada
  3. 3.Department of CardiologyUniversity of ManitobaCanada
  4. 4.Manitoba ClinicWinnipegCanada

Personalised recommendations