Skip to main content

Phytoestrogens and Cardiovascular Disorders

  • Chapter
Book cover Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 300 Accesses

Summary

Dietary intake of phytoestrogens has been associated with a reduction in risk of cardiovascular disorders including coronary heart disease, hypertension and atherosclerosis. Phytoestrogens have long been found to be structurally similar to the female sex hormone, 17ß-estradiol, and have a wide range of estrogenic effects. Like 17ß-estradiol, phytoestrogens such as genistein have been suggested to exert its cardioprotective actions through favourable alteration of serum lipoprotein levels. There is also evidence indicating the role of isoflavones as tyrosine kinase inhibitors, calcium channel antagonists as well as antioxidants. Since genistein has a higher affinity for estrogen receptor ß than for estrogen receptor α, it is predicted to have a preferential protective effect on the cardiovascular system without significant actions on the reproductive system. Therefore, genistein and related compounds may have superiority over 17ß-estradiol as potential therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel DW. 1998. Overview of atherosclerosis. Clin Ther 20(Suppl B):B2–B17.

    Article  PubMed  Google Scholar 

  2. Barrett-Conner E. 1997. Sex differences I coronary heart disease. Why are women so superior? The 1995. Ancel Keys Lecture. Circulation 95:252–264.

    Google Scholar 

  3. Saaman SA, Crawfore MH. 1995. Estrogen and cardiovascular function after menopause. J Am Coll Cardiol 26:1403–1410.

    Article  Google Scholar 

  4. Van der Schouw YT, Van der Graaf Y, Steyerberg EW, Eijkemans MJC, Banga JD. 1996. Age at menopause as a risk factor for cardiovascular mortality. Lancet 347:714–718.

    Article  PubMed  Google Scholar 

  5. Dallongeville J, Marecaux N, Isorez D, Zylberberg G, Fruchart J-C, Amouyel P. 1995. Multiple coronary heart disease risk factors are associated with menopause and influenced by substitutive hormonal therapy in a cohort of French women. Athersclerosis 118:123–133.

    Article  CAS  Google Scholar 

  6. Stampfer MJ, Colditz GA, Willett WC, Manson JE, Rosner B, Speizer FE, Hennekens CH. 1991. Postmenopausal estrogen therapy and cardiovascular disease. N Engl J Med 325:756–762.

    Article  PubMed  CAS  Google Scholar 

  7. Ettinger N, Friedman GC, Bush T, Quesenberry CP Jr. 1996. Reduced mortality associated with long-term postmenopausal estrogen therapy. Obstet Gynecol 87:6–12.

    Article  PubMed  CAS  Google Scholar 

  8. Harlap S. 1992. The benefits and risks of hormone replacement therapy: an epidemiologic overview. Am J Obstet Gynecol 166:1986–1992.

    Article  PubMed  CAS  Google Scholar 

  9. Colditz GA, Hankinson SE, Hunter DJ, Willett WC, Manson JE, Stampfer MJ, Hennekens CH, Rosner B, Speizer FE. 1995. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med 332:1589–1593.

    Article  PubMed  CAS  Google Scholar 

  10. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. 1996. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930.

    Article  PubMed  CAS  Google Scholar 

  11. Mosselman S, Polman H, Dijkema R. 1996. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 392:49–53.

    Article  PubMed  CAS  Google Scholar 

  12. Hodges YK, Tung L, Yan XD, Graham JD, Horwitz KB, Horwitz LD. 2000. Estrogen receptor α and ß—prevalence of estrogen receptor ß mRNA in human vascular smooth muscle and transcriptional effects. Circulation 101:1792–1798.

    Article  PubMed  CAS  Google Scholar 

  13. Gustafsson JA. 2000. Novel aspects of estrogen action. J Soc Gynecol Invest 7(1 Suppl):S8–S9.

    Article  CAS  Google Scholar 

  14. Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson JA, Nilsson S. 1998. Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 54:105–112.

    PubMed  CAS  Google Scholar 

  15. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor ß. Endocrinology 139:4252–4263.

    Article  PubMed  CAS  Google Scholar 

  16. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870.

    Article  PubMed  CAS  Google Scholar 

  17. Martin PM, Horwitz KB, Ryan DS, McGuire WL. 1978. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103:1860–1867.

    Article  PubMed  CAS  Google Scholar 

  18. Murkies AL, Wilcox G, Davis SR. 1998. Phytoestrogens. J Clin Endocrin Metab 83:297–303.

    Article  CAS  Google Scholar 

  19. Adlercreutz H, Mazur W. 1995. Phyto-oestrogens and western diseases. Ann Med 29:95–120.

    Google Scholar 

  20. Clarkson TB, Anthony MS, Hugher CL Jr. 1995. Estrogenic soybeans isoflavones and chronic disease. Risks and benefits. Trends Endocrinol Metab 6:11–16.

    Article  PubMed  CAS  Google Scholar 

  21. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595.

    PubMed  CAS  Google Scholar 

  22. Takahashi T, Kawahara Y, Okuda M, Ueno H, Takeshita A, Yokoyama M. 1997. Angiotensin II stimulates mitogen-activated protein kinases and protein synthesis by a Ras-independent pathway in vascular smooth muscle cells. J Biol Chem 272:16018–16022.

    Article  PubMed  CAS  Google Scholar 

  23. Peifley KAA, Winkles JA. Angiotensin II and endothelin-1 increase fibroblast growth factor-2 mRNA expression in vascular smooth muscle cells. Biochem Biophys Res Commun 242:202–208.

    Google Scholar 

  24. Gazit A, Yaish P, Gilon C, Levitzki A. 1989. Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 32:2344–2352.

    Article  PubMed  CAS  Google Scholar 

  25. Wijetunge S, Aalkjaer C, Schachter M, Hughes AD. 1992. Tyrosine kinase inhibitors block calcium channel currents in vascular smooth muscle cells. Biochem Biophys Res Commun 189:1620–1623.

    Article  PubMed  CAS  Google Scholar 

  26. Abebe W, Agrawal DK. 1995. Role of tyrosine kinases in norepinephrine-induced contraction of vascular smooth muscle. J Cardioivasc Pharmacol 26:153–159.

    Article  CAS  Google Scholar 

  27. Watts SW, Yeum CH, Campbell G, Webb RC. 1996. Serotonin stimulates protein tyrosyl phosphorylation and vascular contraction via tyrosine kinase. J Vasc Res 33:288–298.

    Article  PubMed  CAS  Google Scholar 

  28. Peterson TG, Barnes S. 1993. Isoflavones inhibit the growth of human prostate cancer cell lines without inhibiting epidermal growth factor receptor autophosphorylation. Prostate 22:335–345.

    Article  PubMed  CAS  Google Scholar 

  29. Peterson TG, Barnes S. 1996. Genistein inhibits both estrogen and growth factor stimulated proliferation of human breast cancer cell. Cell Growth Diff 7:1345–1351.

    PubMed  CAS  Google Scholar 

  30. Dalu A, Haskel IJF, Coward L, Lamartiniere CA. 1998. Genistein, a component of soy, inhibits the expression of the EGF and erbB2/Neu receptors in the rat dorsolateral prostate. Prostate 37:36–43.

    Article  PubMed  CAS  Google Scholar 

  31. Low AM. 1996. Role of tyrosine kinase on Ca2+ entry and refilling of agonist-sensitive Ca2+ stores in vascular smooth muscles. Can J Physiol Pharmacol 74:298–304.

    Article  PubMed  CAS  Google Scholar 

  32. Strauss O, Mergler S, Wiederholt M. 1997. Regulation of L-type calcium channels by protein tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epithelial cells. FASEB J 11:859–867.

    PubMed  CAS  Google Scholar 

  33. Liu H, Li K, Sperelakis N. 1997. Tyrosine kinase inhibitor, genistein, inhibits macroscopic L-type calcium current in rat portal vein smooth muscle cells. Can J Physiol Pharmacol 75:1058–1062.

    Article  PubMed  CAS  Google Scholar 

  34. Sargeant P, Farndale RW, Sage SO. 1993. ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem 268:18151–18156.

    PubMed  CAS  Google Scholar 

  35. Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN. 1996. Genistein directly inhibits L-type calcium currents but potentiates cAMP-dependent chloride currents in cardiomyocytes. Biochem Biophys Res Commun 223:598–603.

    Article  PubMed  CAS  Google Scholar 

  36. Yokoshiki H, Sumii K, Sperelakis N. 1996. Inhibition of L-type calcium current in rat ventricular cells by the tyrosine kinase inhibitor, genistein and its inactive analog, daidzein. J Mol Cell Cardiol 28:807–817.

    Article  PubMed  CAS  Google Scholar 

  37. Morikawa H, Fukuda K, Mima H, Shoda T, Kato S, Mori K. 1998. Tyrosine kinase inhibitors suppress N-type and T-type Ca2+channel currents in NG108-15 cells. Pflugers Archiv—Eur J Physiol 436:127–132.

    Article  CAS  Google Scholar 

  38. Wei H, Bowen R, Cai Q, Barnes S, Wang Y. 1995. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 208:124–130.

    Article  PubMed  CAS  Google Scholar 

  39. Ruiz-Larrea MB, Mohan AR, Paganga G, Miller NJ, Bolwell GR, Rice-Evans CA. 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Radical Res 26:63–70.

    Article  CAS  Google Scholar 

  40. Kerry N, Abbey M. 1998. The isoflavone genistein inhibits copper and peroxyl radical medicated low density lipoprotein oxidation in vitro. Atherosclerosis 140:341–347.

    Article  PubMed  CAS  Google Scholar 

  41. Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG. 1998. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 360:142–148.

    Article  PubMed  CAS  Google Scholar 

  42. Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H. 1998. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 95:3106–3110.

    Article  PubMed  CAS  Google Scholar 

  43. Brown MS, Goldstein JL. 1976. Receptor-mediated control of cholesterol metabolism. Science 191:150–154.

    Article  PubMed  CAS  Google Scholar 

  44. Miller GJ, Miller NE. 1975. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1:16–9.

    Article  PubMed  CAS  Google Scholar 

  45. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witzum JL. 1989. Beyond cholesterol, modifications of low density lipoprotein that increase its atherogeneciry. N Engl J Med 320:915–924.

    Article  PubMed  CAS  Google Scholar 

  46. Witztum JL, Steinberg D. 1991. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792.

    Article  PubMed  CAS  Google Scholar 

  47. Ren S, Man RYK, Angel A, Shen GX. 1997. Oxidative modification enhances lipoprotein(a)-induced overproduction of plasminogen activator inhibitor-1 in cultured vascular endothelial cells. Atherosclerosis 128:1–10.

    Article  PubMed  CAS  Google Scholar 

  48. Simon BC, Cunningham LD, Cohen RA. 1990. Oxidized low-density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Invest 86:75–79.

    Article  PubMed  CAS  Google Scholar 

  49. Mangin EL Jr, Kugiyama K, Nguy JH, Kerns SA, Henry PD. 1993. Effects of lysolipids and oxidatively modified low density lipoprotein on endothelium-dependent relaxation of rabbit aorta. Circ Res 72:161–166.

    Article  PubMed  CAS  Google Scholar 

  50. Abebe W, Mustafa SJ. 1997. Effect of low density lipoprotein on adenosine receptor-mediated coronary vasorelaxation in vitro. J Pharmacol Exp Ther 282:851–857.

    PubMed  CAS  Google Scholar 

  51. Balmir F, Staack R, Jeffrey E, Jimerez MDB, Wand L, Potter SM. 1996. An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. J Nutr 126:3046–3053.

    PubMed  CAS  Google Scholar 

  52. Anthony MS, Clarkson TB, Bullock BC, Wagner JD. 1997. Soy protein versus soy phytoestrogens in prevention of diet-induced coronary artery atherosclerosis of male cynomolgus monkeys. Atheriosler Thromb Vasc Biol 17:2524–2531.

    Article  CAS  Google Scholar 

  53. Washburn S, Burke GL, Morgan T, Anthony M. 1999. Effect of soy protein supplementation on serum lipoproteins, blood pressure and menopausal symptoms in perimenopausal women. Menopause. 6:7–13.

    Article  PubMed  CAS  Google Scholar 

  54. Shorey RL, Bazan B, Lo GD, Steinke FH. 1981. Determinants of hypocholesterolemic response to soy and animal protein based diets. Am J Clin Nutr 34:1769–1778.

    PubMed  CAS  Google Scholar 

  55. Hodgson JM, Puddey IB, Beilin LJ, Mori TA, Croft KD. 1998. Supplementation with isoflavonoid phytoestrogens does not alter serum lipid concentrations: a randomized controlled trial in humans. J Nutr 128:728–732.

    PubMed  CAS  Google Scholar 

  56. Anderson JW, Johnstone BM, Cooke-Newell ME. 1995. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333:272–286.

    Article  Google Scholar 

  57. Clarkson TB, Anthony MS. 1998. Phytoestrogens and coronary heart disease. Baillieres Clin Endocrinol Metab 12:589–604.

    Article  PubMed  CAS  Google Scholar 

  58. Forsythe WA III. 1995. Soy protein, thyroid regulation and cholesterol metabolism. J Nutr 125:619S–623S.

    PubMed  CAS  Google Scholar 

  59. Potter SM. 1996. Soy protein and serum lipids. Curr Opin Lipidol 7:260–264.

    Article  PubMed  CAS  Google Scholar 

  60. Fumagalli R, Soleri L, Farina R, Musanti R, Mantero O, Noseda G, Gatti E, Sirtori CR. 1982. Facal cholesterol excretion studies in type II hypercholesterolemic patients treated with the soybean protein diets. Atherosclerosis 43:341–353.

    Article  PubMed  CAS  Google Scholar 

  61. Grundy SM, Abrams JJ. 1983. Comparison of actions of soy protein and casein on metabolism of plasma lipoproteins and cholesterol in humans. Am J Clin Nutr 38:245–252.

    PubMed  CAS  Google Scholar 

  62. Sirtori CR, Lovati MR, Manzoni C, Monetti M, Pazzucconi F, Gatti E. 1995. Soy and cholesterol reduction: clinical experience. J Nutr 125(suppl):599S–605S.

    Google Scholar 

  63. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. 1998. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr 128:954–959.

    PubMed  CAS  Google Scholar 

  64. de Whalley CV, Rankin SM, Hoult JRS, Jessup W, Leake DS. 1990. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharm 39:1743–1750.

    Article  PubMed  Google Scholar 

  65. Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BMK. 1997. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17:2868–2874.

    Article  PubMed  CAS  Google Scholar 

  66. Cai Q, Wei H. 1996. Effect of dietary genistein on antioxidant enzyme activities in SENCAR mice. Nutr Cancer 25:1–7.

    Article  PubMed  CAS  Google Scholar 

  67. Sargeant P, Farndale RW, Sage SO. 1993. The tyrosine kinase inhibitors methyl 2,5-dihydroxycin-nimate and genistein reduce thrombin-evoked tyrosine phophorylation and Ca2+ entry in human platelets. FEBS Lett 315:242–246.

    Article  PubMed  CAS  Google Scholar 

  68. Wilcox JN, Blumenthal BF. 1995. Thrombotic mechanisms in atherosclerosis: potential impact of soy protein. J Nutr 125:631S–638S.

    PubMed  CAS  Google Scholar 

  69. Nakashima S, Koike T, Nozawa Y. 1991. Genistein, a protein tyrosine kinase inhibitor, inhibits thromboxane A2-mediated human platelet responses. Mol Pharm 39:475–480.

    CAS  Google Scholar 

  70. McNicol A. 1992. The effects of genistein on platelet function are due to thromboxane receptor antagonism rather than inhibition of tyrosine kinase. Prostaglandins, Leukotrienes, Essential Fatty Acids 48:379–384.

    Article  Google Scholar 

  71. Vogel RA. 1997. Coronary risk factors, endothelial function, and atherosclerosis: a review. Clin Cardiol 20:426–432.

    Article  PubMed  CAS  Google Scholar 

  72. Honore EK, Williams JK, Anthony MS, Clarkson TB. 1997. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertil Steril 67:148–154.

    Article  PubMed  CAS  Google Scholar 

  73. Williams JK, Clarkson TB. 1998. Dietary soy isoflavones inhibit in-vivo constrictor responses of coronary arteries to collagen-induced platelet activation. Coronary Art Disease 9:759–764.

    Article  CAS  Google Scholar 

  74. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. 1990. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 344: 160–162.

    Article  PubMed  CAS  Google Scholar 

  75. Tanner FC, Noll G, Boulanger CM, Lüscher TF. 1991. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries: role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83:2012–2020.

    Article  PubMed  CAS  Google Scholar 

  76. Mishra SK, Abbot SE, Choudhury Z, Cheng M, Khatab N, Maycock NJ, Zavery A, Aaronson PI. 2000. Endothelium-dependent relaxation of rat aorta and main pulmonary artery by the phytoestrogens genistein and daidzein. Cardiovasc Res 43:539–546.

    Article  Google Scholar 

  77. Karamsetty MR, Klinger JR, Hill NS. 2001. Phytoestrogens restore nitric oxide-mediated relaxation in isolated pulmonary arteries from chronically hypoxic rats. J Pharmacol Exp Ther 297:968–974.

    PubMed  CAS  Google Scholar 

  78. Squadrito F, Altavilla D, Squadrito G, Saitta A, Cucinotta D, Minutoli L, Deodato B, Ferlito M, Campo GM, Bova A, Caputi AP. 2000. Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats. Cardiovasc Res 45:454–462.

    Article  PubMed  CAS  Google Scholar 

  79. Nestel PJ, Yamashita T, Sasahara T, Pomeroy S, Dart A, Lomesarof T P, Owen A, Abbey M. 1997. Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and perimenopausal women. Artenoscler Thromb Vasc Biol 17:3392–3398.

    Article  CAS  Google Scholar 

  80. Nestel PJ, Pomeroy S, Kay S, Komesaroff P, Behrsing J, Cameron JD, West L. 1999. Isoflavones from red clover improve systemic arterial compliance but not plasma lipids in menopausal women. J Clin Endocrinol Metab 84:895–898.

    Article  PubMed  CAS  Google Scholar 

  81. Satake N, Shibata S. 1999. The potentiating effect of genistein on the relaxation induced by isoproterenol in rat aortic rings. Gen Pharmacol 33:221–227.

    Article  PubMed  CAS  Google Scholar 

  82. Satake N, Imanishi M, Shibata S. 1999. Increased nitroglycerin-induced relaxation by genistein in rat aortic rings. Eur J Pharmacol 377:193–197.

    Article  PubMed  CAS  Google Scholar 

  83. Nevala R, Paukku K, Korpela R, Vapaatalo H. 2001. Calcium-sensitive potassium channel inhibitors antagonize genistein- and daidzein-induced arterial relaxation in vitro. Life Sci 69:1407–1417.

    Article  PubMed  CAS  Google Scholar 

  84. Laniyonu AA, Saifeddine M, Yang SG, Hollenberg MD. 1994. Tyrosine kinase inhibitors and the contractile action of G-protein-linked vascular agonists. Can J Physiol Pharmacol 72:1075–1085.

    Article  PubMed  CAS  Google Scholar 

  85. Filipeanu CM, Brailoiu E, Huhurez G, Slatineanu S, Baltatu O, Branisteanu DD. 1995. Multiple effects of tyrosine kinase inhibitors on vascular smooth muscle contraction. Eur J Pharmacol 281:29–35.

    Article  PubMed  CAS  Google Scholar 

  86. Nevala R, Korpela R, Vapaatalo H. 1998. Plant derived estrogens relax rat mesenteric artery in vitro. Life Sci. 63:PL95–PL100.

    Article  CAS  Google Scholar 

  87. Figtree GA, Griffiths H, Lu YQ, Webb CM, MacLeod K, Collins P. 2000. Plant-derived estrogens relax coronary arteries in vitro by a calcium antagonistic mechanism. J Am Coll Cardiol 35:1977–1985.

    Article  PubMed  CAS  Google Scholar 

  88. Sack MN, Rader DJ, Cannon RO III. 1994. Oestrogen and inhibition oxidationof low-density lipoproteins in postmenopausal women. Lancet 343:267–270.

    Google Scholar 

  89. Keaney Jr JF, Shwaery GT, Xu A-M, Nicolosi RJ, Loscalzo J, Foxall TL, Vita JA. 1994. 17ß-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation 89:2251–2259.

    Article  PubMed  CAS  Google Scholar 

  90. Shwaery GT, Vita JA, Keaney JF Jr. 1995. Antioxidant protection of LDL by physiological concentrations of 17ß-estradiol. Requirement for estradiol moification. Circulation 95:1378–1385.

    Article  Google Scholar 

  91. Huang M, Li J, Teoh H, Man RYK. 1999. Low concentrations of 17ß-estradiol reduce oxidative modification of low-density lipoproteins in the presence of vitamin C and vitamin E. Free Radical Biol Med 27:438–441.

    Article  CAS  Google Scholar 

  92. Herrington DM, Braden GA, Williams JK, Morgan TM. 1994. Endothelial-dependent coronary vasomotor responsiveness in postmenopausal women with and without estrogen replacement therapy. Am J Cardiol 73:951–952.

    Article  PubMed  CAS  Google Scholar 

  93. Gilligan DM, Quyyumi AA, Cannon RO. 1994. Effects of physiological levels of estrogen on coronary vasomotor function in postmenopausal women. Circulation 89:2545–2551.

    Article  PubMed  CAS  Google Scholar 

  94. Han S-Z, Karaki H, Ouchi Y, Akishita M, Orimo H. 1995. 17ß-Estradiol inhibits Ca2+ influx and Ca2+ release induced by thromboxane A2 in porcine coronary artery. Circulation 91:2619–2626.

    Article  PubMed  CAS  Google Scholar 

  95. Teoh H, Leung SWS, Man RYK. 1999. Short-term exposure to physiological levels of 17ß-estradiol enhances endothelium-independent relaxation in porcine coronary artery. Cardiovasc Res 42:224–231.

    Article  PubMed  CAS  Google Scholar 

  96. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. 1986. Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154.

    Article  PubMed  CAS  Google Scholar 

  97. Inoue S, Hoshino S, Miyoshi H, Akishita M, Hosoi T, Orimo H, Ouchi Y. 1996. Identification of a novel isoform of estrogen receptor, a potential inhibitor of estrogen action, in vascular smooth muscle cells. Biochem Biophys Res Commun 219:766–772.

    Article  PubMed  CAS  Google Scholar 

  98. Register TC, Adams MR. 1998. Coronary artery and cultured aortic smooth smucle cells express mRNA for both the classical estrogen receptor and the newly described estrogen receptor ß. J Steroid Biochem Mol Biol 64:187–191.

    Article  PubMed  CAS  Google Scholar 

  99. Iafrati MD, Karas RH, Aronovitz M, Kim S, Sullivan TR, Lubahn DB, O’Donnell TF, Korach KS, Mendelsohn ME. 1997. Estrogen inhibits the vascular injury response in estrogen receptor α-deficient mice. Nature Med 3:545–548.

    Article  PubMed  CAS  Google Scholar 

  100. Lindner V, Kim SK, Karas RH, Kuiper GG, Gustafsson JA, Mendelsohn ME. 1998. Increased expression of estrogen receptor-ß in male blood vessels after vascular injury. Circ Res 83:224–229.

    Article  PubMed  CAS  Google Scholar 

  101. Makela S, Savolainen H, Aavik E, Myllarniemi M, Strauss L, Taskinen E, Gustafsson JA, Hayry P. 1999. Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors α and ß. Proc Natl Acad Sci USA 96:7077–7082.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricky Y. K. Man .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Man, R.Y.K., Leung, S.W.S., Teoh, H., Quan, A., Keung, W., Lee, M.Y.K. (2004). Phytoestrogens and Cardiovascular Disorders. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics