Skip to main content

Smad Cofactors/Corepressors in the Fibrosed Post-MI Heart: Possible Therapeutic Targets

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 305 Accesses

Summary

Several axioms that govern our understanding of the pathogenesis of post-MI congestive heart failure have recently been questioned or revisited in lieu of the relative flood of new data addressing the role of cardiac non-myocytes in this disease state. Among these is the assumption that the cardiac matrix necessarily serves a secondary role to initial progressive dysfunction of cardiac myocytes. It is now well established that remodeling of the cardiac interstitium is a separate and distinct contributor to the progression to heart failure, and that the turnover of extracellular matrix is rapid enough to be relevant to progressive heart disease. As cardiac fibroblasts and myofibroblasts are the main source of matrix and regulate cardiac wound healing, the study of stimulating ligands and their signaling pathways may reveal novel sites for therapeutic intervention. This chapter provides background on the cardiac interstitial components and their turnover as well as providing support for the argument for the need to address post-receptor components of classical TGF-ß signaling in the regulation of cardiac (myo)fibroblast function, with an emphasis on Smad proteins and their cofactors/corepressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dell’Orbo C. 2000. Structural molecules of connective tissue matrices. Ital J Anat Embryol 105:51–96.

    PubMed  Google Scholar 

  2. Alberts B. Molecular Biology of the Cell third ed. Bray D, Lewis J, Raff M, Roberts K, Watson JD. 1994. New York, Garland Publishing Inc.

    Google Scholar 

  3. Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA. 1994. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 75:539–545.

    Article  PubMed  CAS  Google Scholar 

  4. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325:293–302.

    Google Scholar 

  5. Scott JE. 1992. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J 6:2639–2645.

    PubMed  CAS  Google Scholar 

  6. Honda A, Murota SI, Mori Y. 1982. Comparative study on glycosaminoglycan-sulfotransferases in rat costal cartilage and chick embryo cartilage. Comp Biochem Physiol B 71:41–47.

    PubMed  CAS  Google Scholar 

  7. Ruoslahti E, Yamaguchi Y. 1991. Proteoglycans as modulators of growth factor activities. Cell 64: 867–869.

    Article  PubMed  CAS  Google Scholar 

  8. Martin GR, Timpl R. 1987. Laminin and other basement membrane components. Annu Rev Cell Biol 3:57–85.

    Article  PubMed  CAS  Google Scholar 

  9. Tryggvason K. 1993. The laminin family. Curr Opin Cell Biol 5:877–882.

    Article  PubMed  CAS  Google Scholar 

  10. Kreis T. Guidebook to the extracellular matrix and adhesion proteins. Vale R. 1993. London, Oxford University Press.

    Google Scholar 

  11. Lundgren E, Gullberg D, Rubin K, Borg TK, Terracio MJ, Terracio L. 1988. In vitro studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J Cell Physiol 136:43–53.

    Article  PubMed  CAS  Google Scholar 

  12. Lundgren E, Terracio L, Mardh S, Borg TK. 1985. Extracellular matrix components influence the survival of adult cardiac myocytes in vitro. Exp Cell Res 158:371–381.

    Article  PubMed  CAS  Google Scholar 

  13. Hynes RO. 1986. Fibronectins. Sci Am 254:42–51.

    Article  PubMed  CAS  Google Scholar 

  14. Schwarzbauer JE. 1991. Alternative splicing of fibronectin: three variants, three functions. Bioessays 13:527–533.

    Article  PubMed  CAS  Google Scholar 

  15. Cleary EG, Gibson MA. 1983. Elastin-associated microfibrils and microfibrillar proteins. Int Rev Connect Tissue Res 10:97–209.

    PubMed  CAS  Google Scholar 

  16. Robinson TE 1983. The skeletal framework of mammalian heart muscle: arrangement of inter- and pericellular connective tissue structures. Cohen-Gould L, Factor SM. Lab Invest 49:482–487.

    Google Scholar 

  17. Borg TK. 1982. Functional arrangement of connective tissue in striated muscle with emphasis on cardiac muscle. Sullivan T, Ivy J. SEM 4:1775–1784.

    Google Scholar 

  18. Ju H, Dixon IMC. 1996. Extracellular matrix and cardiovascular diseases. Can J Cardiol 12: 1259–1267.

    PubMed  CAS  Google Scholar 

  19. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. 1994. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292.

    Article  PubMed  CAS  Google Scholar 

  20. Bornstein P, Horlein D, McPherson J. 1984. Regulation of collagen synthesis. Prog Clin Biol Res 154:61–80.

    PubMed  CAS  Google Scholar 

  21. Eghbali M, Weber KT 1990. Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol Cell Biochem 96:1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Burgeson RE. 1988. New collagens, new concepts. Annu Rev Cell Biol 4:551–577.

    Article  PubMed  CAS  Google Scholar 

  23. Pelouch V, Dixon IMC, Golfman L, Beamish RE, Dhalla NS. 1993. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129:101–120.

    Article  PubMed  CAS  Google Scholar 

  24. Bishop JE, Laurent GJ. 1995. Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16 Suppl C:38–44.

    Article  PubMed  CAS  Google Scholar 

  25. Weber KT 1989. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652.

    Article  PubMed  CAS  Google Scholar 

  26. Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium. Fibrosis and reninangiotensin-aldosterone system. Circulation 83:1849–1865.

    Article  PubMed  CAS  Google Scholar 

  27. Janicki JS. Molecular and subcellular cardiology: effects of structure and function. Brower G, Henegar J, Wang L. 1995. New York, Plenum Press.

    Google Scholar 

  28. Sutton MG, Sharpe N. 2000. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988.

    Article  PubMed  CAS  Google Scholar 

  29. Jaffe R. Analytical and quantitative cardiology. Flugelman MY, Halon DA, Lewis RB. 257–266. 1997. New York, Plenum Press.

    Chapter  Google Scholar 

  30. Weber KT, Sun Y, Katwa LC. 1996. Wound healing following myocardial infarction. Clin Cardiol 19:447–455.

    Article  PubMed  CAS  Google Scholar 

  31. Anversa P, Sonnenblick EH. 1990. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog Cardiovasc Dis 33:49–70.

    Article  PubMed  CAS  Google Scholar 

  32. Olivetti G, Quaini F, Lagrasta C, Cigola E, Ricci R, Maestri R, Anversa P. 1995. Cellular basis of ventricular remodeling after myocardial infarction in rats. Cardioscience 6:101–106.

    PubMed  CAS  Google Scholar 

  33. Berne RM, Physiology, Levy MN, Koeppen BM, Stanton BA. 2001. St Louis, MI, Mosby Inc.

    Google Scholar 

  34. Tun A, Khan IA. 2001. Myocardial infarction with normal coronary arteries: the pathologic and clinical perspectives. Angiology 52:299–304.

    Article  PubMed  CAS  Google Scholar 

  35. Maisch B. 1996. Ventricular remodeling. Cardiology 87 Suppl 1:2–10.

    Article  PubMed  Google Scholar 

  36. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W. 1986. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74:693–702.

    Article  PubMed  CAS  Google Scholar 

  37. Gerdes AM, Capasso JM. 1995. Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J Mol Cell Cardiol 27:849–856.

    Article  PubMed  CAS  Google Scholar 

  38. Dietz KJ. Ventricular remodeling after acute myocardial infarction. Osterziel R, Gulba DC, Harsdorf RV. Thromb Haemost 82:73–75. 1999.

    Google Scholar 

  39. Villarreal FJ, Dillmann WH. 1992. Cardiac hypertrophy-induced changes in mRNA levels forTGF-beta 1, fibronectin, and collagen. Am J Physiol 262:H1861–H1866.

    PubMed  CAS  Google Scholar 

  40. Bishop JE, Lindahl G. 1999. Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res 42:27–44.

    Article  PubMed  CAS  Google Scholar 

  41. Bishop JE, Rhodes S, Laurent GJ, Low RB, Stirewalt WS. 1994. Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res 28:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  42. Cobb MH. 1999. MAP kinase pathways. Prog Biophys Mol Biol 71:479–500.

    Article  PubMed  CAS  Google Scholar 

  43. Kim S, Iwao H. 1999. Activation of mitogen-activated protein kinases in cardiovascular hypertrophy and remodeling. Jpn J Pharmacol 80:97–102.

    Article  PubMed  CAS  Google Scholar 

  44. Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang XF. 1999. Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 96:4844–4849.

    Article  PubMed  CAS  Google Scholar 

  45. Narula J, Hajjar RJ, Dec GW. 1998. Apoptosis in the failing heart. Cardiol Clin 16:691–710, ix.

    Article  PubMed  CAS  Google Scholar 

  46. Feuerstein GZ, Young PR. 2000. Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc Res 45:560–569.

    Article  PubMed  CAS  Google Scholar 

  47. Schwartz K, Mercadier JJ. 1996. Molecular and cellular biology of heart failure. Curr Opin Cardiol 11:227–236.

    Article  PubMed  CAS  Google Scholar 

  48. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, et al. 1986. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59: 297–309.

    Article  PubMed  CAS  Google Scholar 

  49. Lombardi WL, Gilbert EM. 2000. The effects of neurohormonal antagonism on pathologic left ventricular remodeling in heart failure. Curr Cardiol Rep 2:90–98.

    Article  PubMed  CAS  Google Scholar 

  50. Dostal DE. 2000. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regul Pept 91:1–11.

    Article  PubMed  CAS  Google Scholar 

  51. Rosendorff C. 1996. The renin-angiotensin system and vascular hypertrophy. J Am Coll Cardiol 28:803–812.

    Article  PubMed  CAS  Google Scholar 

  52. Danser AH. 1996. Local renin-angiotensin systems. Mol Cell Biochem 157:211–216.

    Article  PubMed  CAS  Google Scholar 

  53. Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PB. 1990. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD123177 (AII-2). J Pharmacol Exp Ther 255:584–592

    PubMed  CAS  Google Scholar 

  54. Goodfriend TL, Elliott ME, Catt KJ. 1996. Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654.

    Article  PubMed  CAS  Google Scholar 

  55. Dixon IMC, Ju H, Reid NL, Scammell-La Fleur T, Werner JP, Jasmin G. 1997. Cardiac collagen remodeling in the cardiomvopathic Syrian hamster and the effect of losartan. J Mol Cell Cardiol 29:1837–1850.

    Article  PubMed  CAS  Google Scholar 

  56. Kijima K, Matsubara H, Murasawa S, Maruyama K, Mori Y, Ohkubo N, Komuro I, Yazaki Y, Iwasaka T, Inada M. 1996. Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res 79:887–897.

    Article  PubMed  CAS  Google Scholar 

  57. Tsutsumi Y, Matsubara H, Ohkubo N, Mori Y, Nozawa Y, Murasawa S, Kijima K, Maruyama K, Masaki H, Monguchi Y, et al. 1998. Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res 83:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  58. Campbell SE, Katwa LC. 1997. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958.

    Article  PubMed  CAS  Google Scholar 

  59. Omura T, Kim S, Takeuchi K, Iwao H, Takeda T. 1994. Transforming growth factor beta 1 and extracellular matrix gene expression in isoprenaline induced cardiac hypertrophy: effects of inhibition of the renin-angiotensin system. Cardiovasc Res 28:1835–1842.

    Article  PubMed  CAS  Google Scholar 

  60. Massague J. 2000. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178.

    Article  PubMed  CAS  Google Scholar 

  61. Massague J. 1990. The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641.

    Article  PubMed  CAS  Google Scholar 

  62. Massague J. 1998. TGF-beta signal transduction. Annu Rev Biochem 67:753–791.

    Article  PubMed  CAS  Google Scholar 

  63. Massague J, Wotton D. 2000. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754.

    Article  PubMed  CAS  Google Scholar 

  64. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV. 1985. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705.

    Article  PubMed  CAS  Google Scholar 

  65. Gentry LE, Webb NR, Lim GJ, Brunner AM, Ranchalis JE, Twardzik DR, Lioubin MN, Marquardt H, Purchio AE 1987. Type 1 transforming growth factor beta: amplified expression and secretion of mature and precursor polypeptides in Chinese hamster ovary cells. Mol Cell Biol 7:3418–3427.

    PubMed  CAS  Google Scholar 

  66. Miyazono K, Ichijo H, Heldin CH. 1993. Transforming growth factor-beta: latent forms, binding proteins and receptors. Growth Factors 8:11–22.

    Article  PubMed  CAS  Google Scholar 

  67. Lawrence DA. 1995. Transforming growth factor-beta: an overview. Kidney Int Suppl 49:S19–S23.

    PubMed  CAS  Google Scholar 

  68. Eghbali M. 1989. Cellular origin and distribution of transforming growth factor-beta in the normal rat myocardium. Cell Tissue Res 256:553–558.

    Article  PubMed  CAS  Google Scholar 

  69. Border WA, Noble NA. 1994. Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292.

    Article  PubMed  CAS  Google Scholar 

  70. Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IMC. 1999. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678.

    Article  PubMed  CAS  Google Scholar 

  71. Mathews LS, Vale WW 1991. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65:973–982.

    Article  PubMed  CAS  Google Scholar 

  72. Wrana JL,Tran H, Attisano L, Arora K, Childs SR, Massague J, O’Connor MB. 1994. Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Mol Cell Biol 14:944–950.

    PubMed  CAS  Google Scholar 

  73. Luo K, Lodish HF. 1997. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J 16:1970–1981.

    Article  PubMed  CAS  Google Scholar 

  74. Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH. 1996. Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta 1-induced cellular responses. EMBO J 15:6231–6240.

    PubMed  CAS  Google Scholar 

  75. Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, Imbeaud S, Pepinsky RB, Guerrier D, Boussin L, et al. 1993. Anti-mullerian hormone: the Jost factor. Recent Prog Horm Res 48:1–59.

    PubMed  CAS  Google Scholar 

  76. Wieser R, Wrana JL, Massague J. 1995. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 14:2199–2208.

    PubMed  CAS  Google Scholar 

  77. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. 1996. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215–1224.

    Article  PubMed  CAS  Google Scholar 

  78. Wieser R, Attisano L, Wrana JL, Massague J. 1993. Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region. Mol Cell Biol 13:7239–7247.

    PubMed  CAS  Google Scholar 

  79. Ullrich A, Schlessinger J. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212.

    Article  PubMed  CAS  Google Scholar 

  80. Liu F, Ventura F, Doody J, Massague J. 1995. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15:3479–3486.

    PubMed  CAS  Google Scholar 

  81. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. 1995. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358.

    PubMed  CAS  Google Scholar 

  82. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW 1996. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci USA 93:790–794.

    Article  PubMed  CAS  Google Scholar 

  83. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, et al. 1996. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353.

    Article  PubMed  CAS  Google Scholar 

  84. Raftery LA, Sutherland DJ. 1999. TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol 210:251–268.

    Article  PubMed  CAS  Google Scholar 

  85. Hata A, Lo RS, Wotton D, Lagna G, Massague J. 1997. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388:82–87.

    Article  PubMed  CAS  Google Scholar 

  86. Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J. 1998. Determinants of specificity in TGF-beta signal transduction. Genes Dev 12:2144–2152.

    Article  PubMed  CAS  Google Scholar 

  87. Kretzschmar M, Liu F, Hata A, Doody J, Massague J. 1997. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 11:984-995.

    Article  PubMed  CAS  Google Scholar 

  88. Wisotzkey RG, Mehra A, Sutherland DJ, Dobens LL, Liu X, Dohrmann C, Attisano L, Raftery LA. 1998. Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development 125:1433–1445.

    PubMed  CAS  Google Scholar 

  89. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791.

    Article  PubMed  CAS  Google Scholar 

  90. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, et al. 1997. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362.

    Article  PubMed  CAS  Google Scholar 

  91. Wurthner JU, Frank DB, Felici A, Green HM, Cao Z, Schneider MD, McNally JG, Lechleider RJ, Roberts AB. 2001. Transforming growth factor-beta receptor-associated protein 1 is a Smad4 chaperone. J Biol Chem 276:19495–19502.

    Article  PubMed  CAS  Google Scholar 

  92. Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massague J. 1996. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381:620–623.

    Article  PubMed  CAS  Google Scholar 

  93. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JL. 1996. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85:489–500.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang Y, Feng X, We R, Derynck R. 1996. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383:168-172.

    Article  PubMed  CAS  Google Scholar 

  95. Das P, Maduzia LL, Wang H, Finelli AL, Cho SH, Smith MM, Padgett RW. 1998. The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development 125:1519–1528.

    PubMed  CAS  Google Scholar 

  96. Attisano L, Silvestri C, Izzi L, Labbe E. 2001. The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. Mol Cell Endocrinol 180:3–11.

    Article  PubMed  CAS  Google Scholar 

  97. Labbe E, Silvestri C, Hoodless PA, Wrana JL, Attisano L. 1998. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 2:109–120.

    Article  PubMed  CAS  Google Scholar 

  98. Chen X, Rubock MJ, Whitman M. 1996. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383:691–696.

    Article  PubMed  CAS  Google Scholar 

  99. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, et al. 1997. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635.

    Article  PubMed  CAS  Google Scholar 

  100. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. 1997. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389:622–626.

    Article  PubMed  CAS  Google Scholar 

  101. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Jr, Wrana JL, et al. 1997. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165–1173.

    Article  PubMed  CAS  Google Scholar 

  102. Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Dijke P. 1998. Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem 273: 29195–29201.

    Article  PubMed  CAS  Google Scholar 

  103. Wang B, Hao J, Jones SC, Yee M, Roth JC, Dixon IMC. 2002. Overexpression of Smad 7 attenuates collagen synthesis in cardiac fibroblasts; Smad 7 in cardiac fibroblasts. Am J Physiol (Heart and Circ Physiol), in press.

    Google Scholar 

  104. Visser JA, Themmen AP. 1998. Downstream factors in transforming growth factor-beta family signaling. Mol Cell Endocrinol 146:7–17.

    Article  PubMed  CAS  Google Scholar 

  105. Gilman AG. 1987. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  106. Bourne HR, Sanders DA, McCormick F. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132.

    Article  PubMed  CAS  Google Scholar 

  107. Howe PH, Leof EB. 1989. Transforming growth factor beta 1 treatment of AKR-2B cells is coupled through a pertussis-toxin-sensitive G-protein(s). Biochem J 261:879–888.

    PubMed  CAS  Google Scholar 

  108. Kataoka R, Sherlock J, Lanier SM. 1993. Signaling events initiated by transforming growth factor-beta 1 that require Gi alpha 1. J Biol Chem 268:19851–19857.

    PubMed  CAS  Google Scholar 

  109. McCormick F. 1993. Signal transduction. How receptors turn Ras on. Nature 363:15–16.

    Article  PubMed  CAS  Google Scholar 

  110. Egan SE, Weinberg RA. 1993. The pathway to signal achievement. Nature 365:781–783.

    Article  PubMed  CAS  Google Scholar 

  111. Mulder KM, Morris SL. 1992. Activation of p21ras by transforming growth factor beta in epithelial cells. J Biol Chem 267:5029–5031.

    PubMed  CAS  Google Scholar 

  112. Frey RS, Mulder KM. 1997. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor beta in the negative growth control of breast cancer cells. Cancer Res 57:628–633.

    PubMed  CAS  Google Scholar 

  113. Atfi A, Djelloul S, Chastre E, Davis R, Gespach C. 1997. Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J Biol Chem 272:1429–1432.

    Article  PubMed  CAS  Google Scholar 

  114. Hao J, Wang B, Jones SC, Jassal DS, Dixon IM. 2000. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol 279: H3020–H3030.

    PubMed  CAS  Google Scholar 

  115. Green MR. 2000. TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem Sci 25:59–63.

    Article  PubMed  CAS  Google Scholar 

  116. Muller CW. 2001. Transcription factors: global and detailed views. Curr Opin Struct Biol 11:26–32.

    Article  PubMed  CAS  Google Scholar 

  117. Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD. 2000. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640–649.

    Article  PubMed  CAS  Google Scholar 

  118. Harrison SC. 1991. A structural taxonomy of DNA-binding domains. Nature 353:715–719.

    Article  PubMed  CAS  Google Scholar 

  119. Pabo CO, Sauer RT. 1992. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095.

    Article  PubMed  CAS  Google Scholar 

  120. Murre C, McCaw PS, Baltimore D. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.

    Article  PubMed  CAS  Google Scholar 

  121. Harrison SC, Aggarwal AK. 1990. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem 59:933–969.

    Article  PubMed  CAS  Google Scholar 

  122. Laughon A, Scott MP. 1984. Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins. Nature 310:25–31.

    Article  PubMed  CAS  Google Scholar 

  123. Sauer RT, Yocum RR, Doolittle RF, Lewis M, Pabo CO. 1982. Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature 298:447–451.

    Article  PubMed  CAS  Google Scholar 

  124. Scott MP, Tamkun JW, Hartzell GW, III. 1989. The structure and function of the homeodomain. Biochim Biophys Acta 989:25–48.

    PubMed  CAS  Google Scholar 

  125. Wuthrich K. Transcriptional regulation by homeodomain proteins: structural, functional and genetic aspects. Transcriptional Regulation. 1992. Cold Springs Harbor, New York, Cold Springs Harbor Laboratory Press.

    Google Scholar 

  126. Laity JH, Lee BM, Wright PE. 2001. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46.

    Article  PubMed  CAS  Google Scholar 

  127. Rhodes D, Klug A. 1993. Zinc fingers. Sci Am 268:56–65.

    Article  PubMed  CAS  Google Scholar 

  128. Lamb P, McKnight SL. 1991. Diversity and specificity in transcriptional regulation: the benefits of heterotypic dimerization. Trends Biochem Sci 16:417–422.

    Article  PubMed  CAS  Google Scholar 

  129. Landschulz WH, Johnson PF, McKnight SL. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.

    Article  PubMed  CAS  Google Scholar 

  130. O’Shea EK, Rutkowski R, Kim PS. 1989. Evidence that the leucine zipper is a coiled coil. Science 243:538–542.

    Article  PubMed  Google Scholar 

  131. McKnight SL. 1991. Molecular zippers in gene regulation. Sci Am 264:54–64.

    Article  PubMed  CAS  Google Scholar 

  132. Kaufmann E, Knochel W 1996. Five years on the wings of fork head. Mech Dev 57:3–20.

    Article  PubMed  CAS  Google Scholar 

  133. Weigel D, Jurgens G, Kuttner F, Seifert E, Jackie H. 1989. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658

    Article  PubMed  CAS  Google Scholar 

  134. Lai E, Clark KL, Burley SK, Darnell JE, Jr. 1993. Hepatocyte nuclear factor 3/fork head or “winged helix” proteins: a family of transcription factors of diverse biologic function. Proc Natl Acad Sci USA 90:10421–10423.

    Article  PubMed  CAS  Google Scholar 

  135. Lai E, Prezioso VR, Smith E, Litvin O, Costa RH, Darnell JE, Jr. 1990. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev 4: 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  136. Weigel D, Jackie H. 1990. The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63:455–456.

    Article  PubMed  CAS  Google Scholar 

  137. Winnier GE, Hargett L, Hogan BL. 1997. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev 11: 926–940.

    Article  PubMed  CAS  Google Scholar 

  138. Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E. 1995. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152.

    Article  PubMed  CAS  Google Scholar 

  139. Clark KL, Halay ED, Lai E, Burley SK. 1993. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420

    Article  PubMed  CAS  Google Scholar 

  140. Marsden I, Chen Y, Jin C, Liao X. 1997. Evidence that the DNA binding specificity of winged helix proteins is mediated by a structural change in the amino acid sequence adjacent to the principal DNA binding helix. Biochemistry 36:13248–13255.

    Article  PubMed  CAS  Google Scholar 

  141. Gajiwala KS, Burley SK. 2000. Winged helix proteins. Curr Opin Struct Biol 10:110–116.

    Article  PubMed  CAS  Google Scholar 

  142. Jin C, Liao X. 1999. Backbone dynamics of a winged helix protein and its DNA complex at different temperatures: changes of internal motions in genesis upon binding to DNA. J Mol Biol 292:641–651.

    Article  PubMed  CAS  Google Scholar 

  143. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE. 1998. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617.

    Article  PubMed  CAS  Google Scholar 

  144. Zimmerman CM, Padgett RW. 2000. Transforming growth factor beta signaling mediators and modulators. Gene 249:17–30.

    Article  PubMed  CAS  Google Scholar 

  145. Zhang Y, Feng XH, Derynck R. 1998. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394:909–913.

    Article  PubMed  CAS  Google Scholar 

  146. Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM, Wang XF. 1999. Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol 19:1821–1830.

    PubMed  CAS  Google Scholar 

  147. Hua X, Liu X, Ansari DO, Lodish HF. 1998. Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 12: 3084–3095.

    Article  PubMed  CAS  Google Scholar 

  148. Hua X, Miller ZA, Wu G, Shi Y, Lodish HF. 1999. Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins. Proc Natl Acad Sci USA 96:13130–13135.

    Article  PubMed  CAS  Google Scholar 

  149. Giordano A, Avantaggiati ML. 1999. p300 and CBP: partners for life and death. J Cell Physiol 181: 218–230.

    Article  PubMed  CAS  Google Scholar 

  150. Feng XH, Zhang Y, Wu RY, Derynck R. 1998. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12:2153–2163.

    Article  PubMed  CAS  Google Scholar 

  151. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.

    Article  PubMed  CAS  Google Scholar 

  152. Lee DY, Hayes JJ, Pruss D, Wolffe AP. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84.

    Article  PubMed  CAS  Google Scholar 

  153. Janknecht R, Wells NJ, Hunter T. 1998. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 12:2114–2119.

    Article  PubMed  CAS  Google Scholar 

  154. Pouponnot C, Jayaraman L, Massague J. 1998. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 273:22865–22868.

    Article  PubMed  CAS  Google Scholar 

  155. Nishihara A, Hanai J, Imamura T, Miyazono K, Kawabata M. 1999. E1A inhibits transforming growth factor-beta signaling through binding to Smad proteins. J Biol Chem 274: 28716–28723.

    Article  PubMed  CAS  Google Scholar 

  156. Yanagi Y, Suzawa M, Kawabata M, Miyazono K, Yanagisawa J, Kato S. 1999. Positive and negative modulation of vitamin D receptor function by transforming growth factor-beta signaling through smad proteins. J Biol Chem 274:12971–12974.

    Article  PubMed  CAS  Google Scholar 

  157. Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono K, Kato S. 1999. Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283:1317–1321.

    Article  PubMed  CAS  Google Scholar 

  158. Kops GJ, Burgering BM. 1999. Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med 77:656–665.

    Article  PubMed  CAS  Google Scholar 

  159. Chen X, Weisberg E, Fndmacher V, Watanabe M, Naco G, Whitman M. 1997. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89.

    Article  PubMed  CAS  Google Scholar 

  160. Liu F, Pouponnot C, Massague J. 1997. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 11:3157–3167.

    Article  PubMed  CAS  Google Scholar 

  161. Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B. 1998. Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell 2:121–127.

    Article  PubMed  CAS  Google Scholar 

  162. Wotton D, Lo RS, Lee S, Massague J. 1999. A Smad transcriptional corepressor. Cell 97:29–39.

    Article  PubMed  CAS  Google Scholar 

  163. Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG. 1995. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 270: 31178–31188.

    Article  PubMed  CAS  Google Scholar 

  164. Wotton D, Lo RS, Swaby LA, Massague J. 1999. Multiple modes of repression by the Smad transcriptional corepressor TGIF. J Biol Chem 274:37105–37110.

    Article  PubMed  CAS  Google Scholar 

  165. Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. 1999. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 13:2196–2206.

    Article  PubMed  CAS  Google Scholar 

  166. Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. 1999. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 274:35269–35277.

    Article  PubMed  CAS  Google Scholar 

  167. Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. 1999. Negative feedback regulation of TGF-betasignaling by the SnoN oncoprotein. Science 286:771–774.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. C. Dixon PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roth, J.C., Wang, B., Freed, D.H., Dixon, I.M.C. (2004). Smad Cofactors/Corepressors in the Fibrosed Post-MI Heart: Possible Therapeutic Targets. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics