Skip to main content

Receptors and Channels of Nuclear Envelope Membranes as a New Target for Drug Action

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 298 Accesses

Summary

The use of confocal microscopy and fluorescent dyes permitted us to show that the nucleus plays an important role in excitation-contraction and secretion coupling of several excitable and non excitable cells. In addition, our group suggested that, like the sarcolemmal membrane, the nuclear envelope membrane possesses receptor s and channels which may play an important role in modulating Ca2+ influx and cytosolic Ca2+ buffering capacity of the nucleus.

Our results showed that the nucleus plays a role as a cytosolic Ca2+ buffer during spontaneous contraction of heart cells as well as during stimulation of cell surface membrane receptors of vascular endothelial and smooth muscle cells.

Using isolated nuclei of cardiomyocytes, vascular endothelial and smooth muscle cells, our results showed that receptors and channels are present at the nuclear envelope membranes. Our results also showed that receptors, such as Ang II and ET-1 receptors, undergo internalization and nuclear translocation and that the nucleus could be implicated in protein synthesis of these receptors. These results demonstrate that like the sarcolemmal membrane, the nuclear envelope membranes possesses channels and G-protein-coupled receptors that could be a new target for drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bkaily G. 1994. The possible role of Ca2+ and K+ channels in VSM pathophysiology. In: Ionic Channels in Vascular Smooth Muscle. Ed G. Bkaily 103–113. Austin, TX: Molecular Biology Intelligence Unit, R.G. Landes.

    Google Scholar 

  2. Means AR. 1994. Calcium, calmodulin and cell regulation. FEBS Lett 347:1–4.

    Article  PubMed  CAS  Google Scholar 

  3. Peunova N, Enikolopov G. 1993. Amplicifaction of calcium-induced gene transcription by nitricoxide in neuronal cells. Nature 364:450–453.

    Article  PubMed  CAS  Google Scholar 

  4. Hardingham GE, Chawala S, Johnson CM, Bading H. 1997. Distinct function of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265.

    Article  PubMed  CAS  Google Scholar 

  5. Czubryt MP, Ramjiawan B, Gilchrist JSC, Massaeli H, Pierce GN. 1996. The presence and partitioning of calcium binding proteins in hepatic and cardiac nuclei. J Mol Cell Cardiol 28:455–465.

    Article  PubMed  CAS  Google Scholar 

  6. Steinhardt RA, Alderton J. 1998. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 332:364–366.

    Article  Google Scholar 

  7. Nicotera P, Rossi AD. 1994. Nuclear Ca2+: Physiological regulation and role in apoptosis. Mol Cell Biochem 135:89–98.

    Article  PubMed  CAS  Google Scholar 

  8. Filippatos GS, Gangopadhyay N, Lalude O, Parameswaran N, Said SI, Spielman W, Uhal BD. 2001. Regulation of apoptosis by vasocactive peptides. Am J Physiol 281:L749–L761.

    CAS  Google Scholar 

  9. Bkaily G, Choufani S, Hassan G, El-Bizri N, Jacques D, D’Orléans-Juste P. 2000. Presence of functional endothelin-1 receptors in nuclear membranes of human aortic vascular smooth muscle cells. J Cardiovasc Pharmacol 36(Suppl. 1):S414–S417.

    PubMed  CAS  Google Scholar 

  10. Gilchrist JSC, Czubryt MP, Pierce GN. 1994. Calcium and calcium-binding proteins in the nucleus. Mol Cell Biochem 135:79–88.

    Article  PubMed  CAS  Google Scholar 

  11. Bkaily G, Pothier P, D’Orléans-Juste P, Jacques D, Simaan M, Jaalouk D, Belzile F, Hassan G, Boutin F, Haddad G, Neugebauer W. 1997. The use of confocal microscopy in the investigation of cell structure and function in heart, vascular endothelium and smooth muscle cells. Mol Cell Biochem 172:171–194.

    Article  PubMed  CAS  Google Scholar 

  12. Bkaily G, Massaad D, Choufani S, Jacques D, D’Orléans-Juste P. 2002. Role of endothelin-1 receptors in the sarcolemma membrane and the nuclear membranes in the modulation of basal cytosolic and nuclear calcium levels in heart cells. Clinical Science 103:141–146.

    Google Scholar 

  13. Bkaily G, Gros-Louis N, Naik R, Jaalouk D, Pothier P. 1996. Implication of the nucleus in excitation contraction coupling of heart cells. Mol Cell Biochem 154:113–121.

    Article  PubMed  CAS  Google Scholar 

  14. Bkaily G, D’Orléans-Juste P, Pothier P, Calixto JB, Yuens R. 1997. Nuclear membrane receptors and channel potential therapeutical targets for drug action. Drug Devel Res 42:211–222.

    Article  CAS  Google Scholar 

  15. Bkaily G, Jacques D, Pothier P 1999. Use of confocal microscopy to investigate cell structure and function. Methods Enzymol 307:119–135.

    Article  PubMed  CAS  Google Scholar 

  16. Claing A, Shbaklo H, Plante M, Bkaily G, D’Orléans-Juste P. 2002. Comparison of the contractile and calcium increasing properties of platelet-activating factor and endothelin-1 in the rat mesenteric artery and vein. Br J Pharmacol 135:433–443.

    Article  PubMed  CAS  Google Scholar 

  17. Bkaily G, Jacques D, Hassan G, Chouffani S, D’Orléans-Juste P. 2001. Using confocal imaging to measure changes in intracellular ions. In: Receptors: Structure and Function. Ed C Stanford and R Horton, 209–231. New York, Oxford University Press.

    Google Scholar 

  18. Iborra FJ, Jackson DA, Cook PR. 2001. Coupled transcription and translation within nuclei of mammalian cells. Science 293:1139–1142.

    Article  PubMed  CAS  Google Scholar 

  19. Al-Mohanna FA, Caddy KWT, Bolsover SR. 1994. The nucleus is insulated from large cytosolic calcium ion changes. Nature 367:745–750.

    Article  PubMed  CAS  Google Scholar 

  20. Himpsens B, De Smedt H, Casteels R. 1994. Relationship between [Ca2+]i changes in nucleus and cytosol. Cell Calcium 16:239–246.

    Article  Google Scholar 

  21. Jacques D, Sader S, Choufani S, D’Orléans-Juste P, Charest D. 2000. Endothlein-1 regulates cytosolic and nuclear Ca2+ in human endocardial endothelium. J Cardiovasc Pharmacol 36:S397–S400.

    PubMed  CAS  Google Scholar 

  22. Cannel MB, Cheng H, Lederer WJ. 1994. Spatial non-uniformities in [Ca]I during excitation contraction coupling in cardiac myocytes. Biophys J 67:1942–1958.

    Article  Google Scholar 

  23. O’Malley DM. 1994. Calcium permeability of the neuronal nuclear envelope: Evaluation using confocal volumes and intracellular perfusion. J Neurosci 14:7541–7558.

    Google Scholar 

  24. Santelle L. 1996. The cell nucleus: An eldorado to future calcium research? J Membr Biol 153:83–92.

    Article  Google Scholar 

  25. Haller H, Lindschau C, Quass P, Distler A, Luft FC. 1994. Nuclear calcium signaling is initiated by cytosolic calcium surges in vascular smooth muscle cells. Kidney Int 46:1653–1662.

    Article  PubMed  CAS  Google Scholar 

  26. Gobeil F, Dumont I, Marrache AM, Vasquez-Tello A, Bernier SG, Arban D, Hou X, Beauchamp MH, Quiniou C, Bouayad A, Choufani S, Bhattacharya M, Molochnikoff S, Ribeiro-da-Silva A, Varma DR, Bkaily G, Chemtob S. Regulation of eNOS expression in brain endothelial cells by perinuclear EP3 receptor. Cir Res 90:682–689.

    Google Scholar 

  27. Abrenica B, Gilchrist JSC. 2000. Nucleoplasm Ca2+ loading is regulated by mobilization of perinuclear Ca2+. Cell Calcium 28:127–136.

    Article  PubMed  CAS  Google Scholar 

  28. Mazzanti M, Bustamante JO, Oberleithner H. 2001. Electrical dimension of nuclear envelope. Pharmacol Rev 81:1–19.

    CAS  Google Scholar 

  29. Diliberto PA, Krishna S, Kwon S, Herman B. 1994. Isofor-specific induction of nuclear free calcium oscillations by platelet-derived growth factor. J Biol Chem 269:26349–26357.

    PubMed  CAS  Google Scholar 

  30. Burnier M, Centeno G, Burki E, Brunner HR. 1994. Confocal microscopy to analyze cytosolic and nuclear calcium in cultured vascular cells. Am J Physiol 266:C1118–C1127.

    PubMed  CAS  Google Scholar 

  31. Lin C, Hajnoczky G, Thomas AP. 1994. Propagation of cytosolic calcium waves into the nuclei of hepatocytes. Cell Calcium 16:247–258.

    Article  PubMed  CAS  Google Scholar 

  32. Carafoli E, Genazzani A, Guerini D. 1999. Calcium signallinig in the cell nucleus. Cell calcium 22:313–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Bkaily .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bkaily, G., Jacques, D., Juste, P.D. (2004). Receptors and Channels of Nuclear Envelope Membranes as a New Target for Drug Action. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics