Skip to main content

The Arachidonic Acid Cascade: Thromboxane A2 Antagonism and Synthetase Inhibition in Experimental Myocardial Infarction

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 302 Accesses

Summary

The pathogenesis of myocardial ischemia depends on the factors that upset the balance between myocardial oxygen supply and demand. Arachidonic acid accumulation in the ischemic myocardial tissue, its release and subsequent metabolisation into several classes of eicosanoids and lipid peroxides occurs simultaneously with the development of myocardial ischemic injury. Eicosanoid release in acute ischemia is primarily deleterious and enhances inflammatory-type reactions and functional disturbances of the myocardium. Endoperoxide intermediates (i.e. prostaglandin H2), thromboxane A2 (TXA2) and other eicosanoids having vasoconstrictor and proaggregatory properties are thought to contribute to the pathophysiology of acute myocardial ischemia. Consequently, inhibition of the formation and/or action of TXA2 and other deleterious eicosanoids have been shown to reduce the severity of myocardial ischemia in models of coronary occlusion. In the present study the effects of the specific thromboxane synthetase inhibitor UK 38485 (dazmegrel) and the TXA2/prostaglandin endoperoxide receptor antagonist SQ 29548 on myocardial infarct size, cardiometabolic correlates and hemodynamics were determined in a canine model of 24 h acute myocardial infarction. Anesthetised open-chest dogs were subjected to left anterior descending coronary artery ligation. Twenty minutes post-ligation the dogs were given (i) intravenous saline (0.9% NaCl solution) (n = 12), (ii) UK 38485 (3mg/kg i.v.) (n = 10) or SQ 29548 (0.2mg/kg i.v. loading dose with 0.2mg/kg/h i.v. for 4 hours) (n = 10). UK 38485 and SQ 29548 treatment resulted in a significant (p < 0.01) reduction in infarct size as compared to the controls, UK 38485 salvaged 51% and SQ 29548 salvaged 45% of the left ventricular area at risk of infarction. Borh drugs significantly reduced the accumulation of lactate and restored the activity of myocardial enzymes creatine phosphokinase and lactate dehydrogenase in the ischemic zone of the myocardium. Heart rate. systolic blood pressure and the pressure-rate index were not markedly affected by these drugs. The sharp rise in the left ventricular end diastolic pressure in the saline-treated animals was significantly lowered by UK 38485 and SQ 29548 treatment. The ischemia-induced lowering of the maximal rate of rise of left ventricular pressure (LV dP/dtmax) observed in the saline-treated animals was corrected, albeit non-significantly, by SQ 29548 treatment. These results showing the beneficial effects of UK 38485 and SQ 29548 indicate that thromboxane A2 may be involved in the pathogenesis of myocardial ischemia, The study suggests that attenuation of TXA2 synthesis and action may have potential as a mode of therapy for ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Opie LH. 1997. Oxygen lack: ischemia and angina. In: The Heart: Physiology, from Cell to Circulation, 515–541. New York: Lippincott-Raven Publishers.

    Google Scholar 

  2. Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA. 1990. Acute myocardial ischemia: Development of cell injury in sustained ischemia. Circulation 82(II):II2–II12.

    PubMed  CAS  Google Scholar 

  3. Reimer KA 1996. The slowing of ischemic energy demand in preconditioned myocardium. In: Myocardial Preservation, Preconditioning and Adaptation. Eds. DK Das, RM Engelman and KM Cherian, 13–26. New York: New York Academy of Sciences.

    Google Scholar 

  4. Piper HM. 1990. Irreversible ischemic injury definition of the problem. In: Pathophysiology of Severe Ischemic Myocardial Injury. Ed. HM Piper. 3–14. London: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  5. Spieckermann PG 1990. The critical ATP threshold hypothesis. In: Pathophysiology of Severe Ischemic Myocardial Injury. Ed. HM Piper, 27–39. London: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  6. Sobel BE, Bresnahan GF, Shell WE. 1972. Estimation of infarct size in man and its relation to prognosis. Circulation 46:640–648.

    Article  PubMed  CAS  Google Scholar 

  7. Thompson PL, Fletcher E, Katavatis V. 1979. Enzymatic indices of myocardial necrosis: Influence of short and long-term prognosis after myocardial infarction. Circulation 59:113–119.

    Article  PubMed  CAS  Google Scholar 

  8. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr., Braunward E. 1971. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82.

    Article  PubMed  CAS  Google Scholar 

  9. Braunwald E, Sobel BE. 1984. Coronary blood flow and myocardial ischemia. In: Heart Disease. Ed. E Braunwald. 1235–1261. Philadelphia: WB Saunders Company.

    Google Scholar 

  10. Rude RE, Muller JE, Braunwald E. 1981. Efforts to limit the size of myocardial infarcts. Ann Int Med 95:736–761.

    Article  PubMed  CAS  Google Scholar 

  11. Lange LG, Sobel BE. 1982. Pharmacological salvage of myocardium. Annu Rev Pharmacol 22:115–143.

    Article  CAS  Google Scholar 

  12. Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction. Circulation 81:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  13. Jugdutt BI. 1993. Prevention of ventricular remodeling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 9:103–114.

    PubMed  CAS  Google Scholar 

  14. Karmazyn M, Dhalla NS. 1983. Physiological and pathological aspects of cardiac prostaglandins. Can J Physiol Pharmacol 61:1207–1225.

    Article  PubMed  CAS  Google Scholar 

  15. Moncada S, Vane JR. 1979. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane and prostacyclin. Pharmacol Rev 30:271–331.

    Google Scholar 

  16. Hamberg M, Svensson J, Samuelsson B. 1974. Prostaglandin endoperoxides: a new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 71:3824–3828.

    Article  PubMed  CAS  Google Scholar 

  17. Moncada S, Gryglewski R, Bunting S. 1976. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665.

    Article  PubMed  CAS  Google Scholar 

  18. Moncada S, Vane JR. 1979. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. N Engl J Med 300:1142–1147.

    Article  PubMed  CAS  Google Scholar 

  19. Vane JR, Botting RM. 1995. Prostaglandin profile of prostacyclin. Am J Cardiol 75:3A–10A.

    Article  PubMed  CAS  Google Scholar 

  20. Hamberg M, Svensson J, Samuelsson B. 1975. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–3024.

    Article  PubMed  CAS  Google Scholar 

  21. Piper PJ. 1984. Formation and actions of leukotrienes. Physiol Rev 64:744–761.

    PubMed  CAS  Google Scholar 

  22. Piper PJ, Sampson AP, Yaacob H bin, McLeod JM. 1990. Leukotrienes in the cardiovascular system. In: Advances in Prostaglandin, Thromboxane and Leukotriene Research. Eds. B Samuelsson, S-E Dahlen, J Fritsch and P Hedqvist, 146–152. New York: Raven Press.

    Google Scholar 

  23. Oates JA, FitzGerald GA, Branch RA, Jackson EK, Knapp HR, Roberts LJ. 1988. Clinical implications of prostaglandin and thromboxane A2 formation (2 parts). N Engl J Med 319:689–698; 761–767.

    Article  PubMed  CAS  Google Scholar 

  24. Chien KR, Hau A, Sen A, Buja LM, Willerson JT. 1984. Accumulation of unesterified arachidonic acid in ischemic canine myocardium: relationship to a phosphatidylcholine deacylation reacylation cycle and depletion of membrane phospholipids. Circ Res 54:313–322.

    Article  PubMed  CAS  Google Scholar 

  25. Hirsch PD, Hillis LD, Campbell WB, Firth BG, Willerson JT. 1981. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. New Engl J Med 304:685–691.

    Article  Google Scholar 

  26. Lorenz R. 1990. Antiplatelet therapy in unstable angina: rationale, effectiveness and dosage. In: Unstable Angina. Eds. W Bliefeld, CW Hamm and E Braunwald, 186–202. New York: Springer-Verlag.

    Chapter  Google Scholar 

  27. Dennis EA. 1990. Modification of the arachidonic acid cascade through phospholipase A2 dependent mechanisms. In: Advances in Prostaglandin, Thromboxane and Leukotriene Research. Eds. B Samuelsson, S-E Dahlen, J Fritsch and P Hedqvist, 217–223. New York: Raven Press.

    Google Scholar 

  28. Chiariello M, Ambrosio G, Cappelli-Bigazzi M, Perrone Filardi P, Tritto I, Nevota E, Golino P. 1990. Reduction in infarct size by the phospholipase inhibitor quinacrine in dogs with coronary artery occlusion. Am Heart J 120:801–807.

    Article  PubMed  CAS  Google Scholar 

  29. Vallee E, Gougat J, Navarro J, Delahayes JF. 1979. Anti-inflammatory and platelet antiaggregant activity of phospholipase A2 inhibitors. J Pharm Pharmacol 31:588–592.

    Article  PubMed  CAS  Google Scholar 

  30. Pieper GM. 1990. Arachidonic acid causes postischemic dysfunction in control but not diabetic hearts. Am J Physiol 258:H923–H930.

    PubMed  CAS  Google Scholar 

  31. Reilly RM, Schiller HJ, Bulkley GB. 1991. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg 161:488–503.

    Article  PubMed  CAS  Google Scholar 

  32. Morrow JD, Roberts LJ. 1996. The isoprostanes. Current knowledge and directions for future research. Biochem Pharmacol 51:1–9.

    Article  PubMed  CAS  Google Scholar 

  33. Mehrabi MR, Ekmekcioglu C, Tatzber F, Oguogho A, Ullrich R, Morgan A, Tamaddon F, Grimm M, Glogar HD, Sinzinger H. 1999. The isoprostane, 8-epi-PGF 2 alpha, is accumulated in coronary arteries isolated from patients with coronary heart disease. Cardiovasc Res 43:492–499.

    Article  PubMed  CAS  Google Scholar 

  34. Kijima Y, Hashimura K, Matsu-ura Y, Kato Y, Yasuda T, Ueda T, Orita Y, Fukunaga M. 2001. Transcardiac 8-iso-prostaglandin F2a generation from acute myocardial infarction heart: insight into abrupt reperfusion and oxidant stress. Prostaglandins Leukot Essen Fatty Acids 64:161–166.

    Article  CAS  Google Scholar 

  35. Coker SJ, Ledingham I McA, Parratt JR, Zeitlin IJ. 1981. Aspirin inhibits the early myocardial release of thromboxane B2 and ventricular ectopic activity following acute coronary artery occlusion in dogs. Br J Pharmacol 72:593–595.

    Article  PubMed  CAS  Google Scholar 

  36. Walinsky P, Smith JB, Lefer AM, Lebenthal M, Urban P, Greenspon A, Goldberg S. 1984. Thromboxane A2 in acute myocardial infarction. Am Heart J 108:868–872.

    Article  PubMed  CAS  Google Scholar 

  37. Ashton J, Schmidtz JM, Campbell WB, Ogletree ML, Raheja S, Taylor AL, FitzGenald C, Buja LM, Willerson JT. 1986. Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2 receptor agonists. Cir Res 59:568–578.

    Article  CAS  Google Scholar 

  38. Tada M, Esumi K, Yamagishi M, Kuzuya T, Matsuda H. 1984. Reduction in prostacyclin synthesis as a possible cause of transient flow reduction in partially constricted canine coronary artery. J Mol Cell Cardiol 16:1137–1149.

    Article  PubMed  CAS  Google Scholar 

  39. Mehta JL, Roberts A. 1983. Human vascular tissues produce thromboxane as well as prostacyclin. Am J Physiol 244:R839–R844.

    PubMed  CAS  Google Scholar 

  40. Mehta JL, Mehta P, Lopez LM, Ostrowski N, Aguila E. 1984. Platelet function and biosynthesis of prostacyclin and thromboxane A2 in whole blood upon aspirin administration in man. J Am Coll Cardiol 4:806–811.

    Article  PubMed  CAS  Google Scholar 

  41. Tada M, Kuzuya T, Inoue M, Kodama K, Mishima M, Yumada M, Inui M, Abe H. 1981. Elevation of thromboxane B2 levels in patients with classic and variant angina pectoris. Circulation 64:1107–1115.

    Article  PubMed  CAS  Google Scholar 

  42. FitzGerald DJ, Roy L, Catella F, FitzGerald GA. 1986. Platelet activation in unstable coronary disease. New Engl J Med 315:983–990.

    Article  PubMed  CAS  Google Scholar 

  43. Mehta J, Mehta P, Feldman RL. 1982. Severe intracoronary thromboxane release preceding acute artery occlusion. Prostaglandins Leukotrienes Med 8:599–607.

    CAS  Google Scholar 

  44. FitzGerald DJ, Wright F, FitzGerald GA. 1989. Increased thromboxane biosynthesis during coronary thrombolysis: evidence that platelet activation and thromboxane A2 modulate the response to tissue-type plasminogen activator in vivo. Cir Res 65:83–94.

    Article  CAS  Google Scholar 

  45. Mitchell JRA. 1983. Clinical aspects of the arachidonic acid-thromboxane pathway. Br Med Bull 39:289–295.

    PubMed  CAS  Google Scholar 

  46. Needleman P, Raz A, Ferrendelli JA, Minkes M. 1977. Application of imidazole as a selective inhibitor of thromboxane synthetase in human platelets. Proc Natl Acad Sci USA 74:1716–1720.

    Article  PubMed  CAS  Google Scholar 

  47. Tai H, Lee N, Tai C. 1980. Inhibition of thromboxane synthesis and platelet aggregation by pyridine and its derivatives. In: Advances in Prostaglandin and Thromboxane Research. Eds. B Samuelsson, PW Ramwell and R Paoletti, 447–452. New York: Raven Press.

    Google Scholar 

  48. FitzGerald GA, Brash AR, Oates JA, Pederson AK. 1983. Endogenous prostacyclin biosynthesis and platelet function during selective inhibition of thromboxane synthetase in man. J Clin Invest 71:1336–1343.

    Article  Google Scholar 

  49. Mehta JL, Mehta P, Lawson DL, Ostrowski N, Brigmon L. 1985. Influence of selective thromboxane synthetase blocker CGS-13080 on thromboxane and prostacyclin by leukocytes from platelet-derived endoperoxides. J Lab Clin Med 106:246–252.

    PubMed  CAS  Google Scholar 

  50. Marcus AJ, Weksler BB, Jaffe EA, Broekman MJ. 1980. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J Clin Invest 66:979–986.

    Article  PubMed  CAS  Google Scholar 

  51. Defreyn G, Deckmyn H, Vermylen J. 1982. A thromboxane synthetase inhibitor reorients endoperoxide metabolism in whole blood towards prostacyclin and prostaglandin E2. Thromb Res 26:389–400.

    Article  PubMed  CAS  Google Scholar 

  52. Mehta JL, Lawson DL, Mehta P. 1988. Modulation of human neutrophil superoxide production by selective thromboxane synthetase inhibitor U63, 557A. Life Sciences 43:923–928.

    Article  PubMed  CAS  Google Scholar 

  53. Burke SE, Lefer AM, Smith GM, Smith JB. 1983. Prevention of extension of ischemic damage following acute myocardial ischemia by dazoxiben, a new thromboxane synthetase inhibitor. Br J Clin Pharmacol 15:97s–101s.

    Article  PubMed  Google Scholar 

  54. Farber NE, Pieper GM, Gross GJ. 1988. Lack of involvement of thromboxane A2 in post-ischemic recovery of stunned canine myocardium. Circulation 78:450–461.

    Article  PubMed  CAS  Google Scholar 

  55. Mullane KM, Fornabio D. 1988. Thromboxane synthetase inhibitors reduce infarct size by a platelet-dependent, aspirin-sensitive mechanism. Circ Res 62:668–678.

    Article  PubMed  CAS  Google Scholar 

  56. Nichols WW, Mehta J, Wargovich TJ, Franzini D, Lawson D. 1989. Reduced myocardial neutrophil accumulation and infarct size following thromboxane synthetase inhibitor or receptor antagonist. Angiology 40:209–221.

    Article  PubMed  CAS  Google Scholar 

  57. Wargovich TJ, Mehta J, Nichols WW, Ward MB, Lawson DL, Franzini D, Conti CR. 1987. Reduction in myocardial neutrophil accumulation and infarct size following administration of thromboxane inhibitor U63, 557A. Am Heart J 114:1078–1085.

    Article  PubMed  CAS  Google Scholar 

  58. Austin JC, Berrizbeitia LD, Schoen FJ, Kauffman RP, Hechtman HB, Cohn LH. 1988. Thromboxane synthetase inhibition reduces ventricular irritability after coronary occlusion and reperfusion. Am Heart J 1 15:505–509.

    Article  Google Scholar 

  59. Hock CE, Phillips GR III, Lefer AM. 1985. Protective action of thromboxane synthetase inhibitor in preventing extension of infarct size in acute myocardial infarction. Prostaglandins Leukotrienes Med 17:339–346.

    Article  CAS  Google Scholar 

  60. Hock CE, Lefer AM. 1986. CGS-12970, a thromboxane synthetase inhibitor, limits ischemic damage following coronary artery occlusion. Res Comm Pathol Pharmacol 52:285–294.

    CAS  Google Scholar 

  61. Hoeft A, Karob H, Bock J, Wolpers HG, Wober W, Hellige G. 1986. Preservation of myocardium in transient ischemia by the thromboxane synthetase inhibitor UK 38485. Res Exp 186:35–46.

    Article  CAS  Google Scholar 

  62. Rebec MV, Skrinska VA. 1989. Pharmacology of UK 38485 (Dazmegral), a specific inhibitor of thromboxane A2 synthetase. Prostaglandins Leukot Essen Fatty Acids 38:207–212.

    Article  CAS  Google Scholar 

  63. Ogletree ML, Harris DN, Greenberg R, Haslanger MF, Nakane M. 1985. Pharmacological actions of SQ 29548, a novel selective thromboxane antagonist. J Pharmacol Exp Ther 234:435–441.

    PubMed  CAS  Google Scholar 

  64. Darius H, Smith JB, Lefer AM. 1985. Beneficial effects of a new potent and specific thromboxane receptor antagonist (SQ 29548) in vitro and in vivo. J Pharmacol Exp Ther 235:274–281.

    PubMed  CAS  Google Scholar 

  65. Brezinski ME, Yanagisawa A, Darius H, Lefer AM. 1985. Antiischemic actions of a new thromboxane receptor antagonist during acute myocardial ischemia in cats. Am Heart J 110:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  66. Hock CE, Brezinski ME, Lefer AM. 1986. Anti-ischemic actions of a new thromboxane receptor antagonist SQ 29548 in acute myocardial ischemia. Eur J Pharmacol 122:213–219.

    Article  PubMed  CAS  Google Scholar 

  67. Brezinski ME, Yanagisawa A, Lefer AM. 1987. Cardioprotective actions of specific thromboxane receptor antagonist in acute myocardial ischemia. J Cardiovasc Pharmacol 9:65–71.

    PubMed  CAS  Google Scholar 

  68. Grover GJ, Schumacher WA. 1988. Effect of thromboxane receptor antagonist SQ 29548 on myocardial infarct size in dogs. J Cardiovasc Pharmacol 11:29–35.

    Article  PubMed  CAS  Google Scholar 

  69. Thiemermann C, Ney P, Schror K. 1988. The thromboxane receptor antagonist daltrobin, protects the myocardium from ischemic injury resulting in suppression of leukocytosis. Eur J Pharmacol 155:57–67.

    Article  PubMed  CAS  Google Scholar 

  70. Osborne JA, Lefer AM. 1988. Cardioprotective actions of thromboxane receptor antagonism in ischemic atherosclerotic rabbits. Am J Physiol 255:H318–H324.

    PubMed  CAS  Google Scholar 

  71. Singh Uma, Seth SD, Manchanda SC, Seth Sandeep. 1997. Protective actions of a thromboxane receptor antagonist SQ 29548 in the ischemic myocardium morphologic and hemodynamic effects. Prostaglandins Leukot Essen Fatty Acids 56:105–110.

    Article  Google Scholar 

  72. Aiken JW, Shebuski RJ, Miller OV, Gorman RR. 1981. Endogenous prostacyclin contributes to the efficacy of a thromboxane synthetase inhibitor for preventing coronary artery thrombosis. J Pharmacol Exp Ther 219:299–308.

    PubMed  CAS  Google Scholar 

  73. Golino P, Buja LM, Ashton JH, Kulkarni P, Taylor AL, Willerson JT. 1988. Effect of thromboxane and serotonin receptor antagonists on intracoronary platelet deposition in dogs with experimentally stenosed coronary arteries. Circulation 78:701–711.

    Article  PubMed  CAS  Google Scholar 

  74. Kondo K, Seo RM, Naka M, Kitagawa T, Wakitani K, Sakata M, Kira H, Okegawa T, Kawasaki A. 1989. Effects of ONO-3708, an antagonist of the thromboxane A2/prostaglandin endoperoxide receptor, on platelet aggregation and thrombosis. Eur J Pharmacol 163:253–261.

    Article  PubMed  CAS  Google Scholar 

  75. Mickelson JK, Simpson PJ, Gallas MT, Lucchesi BR. 1987. Thromboxane synthetase inhibition with CGS 13080 improves coronary blood flow after streptokinase-induced thrombolysis. Am Heart J 113:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  76. Shea MJ, Driscoll EM, Romson JL, Pitt B, Lucchesi BR. 1984. Effects of OKY-1581, a thromboxane synthetase inhibitor, on coronary thrombosis in the conscious dog. Eur J Pharmacol 105:285–291.

    Article  PubMed  CAS  Google Scholar 

  77. FitzGerald DJ, Doran J, Jackson E, FitzGerald GA. 1986. Coronary vascular occlusion mediated via thromboxane A2-prostaglandin endoperoxide receptor activation in vivo. J Clin Invest 77:496–502.

    Article  PubMed  CAS  Google Scholar 

  78. Coker SJ, Parratt JR. 1985. AH-23848, a thromboxane antagonist, suppresses ischaemia and reperfusion-induced arrhythmias in anaesthetized greyhounds. Br J of Pharmacol 86:259–264.

    Article  CAS  Google Scholar 

  79. Wainwright C, Parratt J. 1987. Antiarrhythmic effects of the thromboxane antagonist BM 13.177. Eur J Pharmacol 133:257–264.

    Article  PubMed  CAS  Google Scholar 

  80. Mehta JL, Nichols WW, Schofield R, Donnelly WH, Chandan VK. 1990. TXA2 inhibition and ischemia-induced loss of myocardial function and reactive hyperemia. Am J Physiol 25:H1402–H1408.

    Google Scholar 

  81. Kramer J, Davis A, Dean R McCluskey ER, Needleman P, Corr PB. 1985. Thromboxane A2 does not contribute to arrhythmogenesis during evolving myocardial infarction. J Cardiovasc Pharmacol 7:1069–1076.

    Article  PubMed  CAS  Google Scholar 

  82. Tada M, Hoshida S, Kuzuya Y, Inoue M, Minamino T, Abe H. 1985. Augmented thromboxane A2 generation and efficacy of its blockade in acute myocardial infarction. Int J Cardiol 8:301–312.

    Article  PubMed  CAS  Google Scholar 

  83. Thaulow E, Dale J, Myhre E. 1984. Effects of a selective thromboxane synthetase inhibitor, dazoxiben, and of acetylsalicylic acid in myocardial ischemia in patients with coronary artery diseases. Am J Cardiol 53:1255–1258.

    Article  PubMed  CAS  Google Scholar 

  84. Fitzgerald GA, Reilly IAG, Pedersen AK. 1985. The biochemical pharmacology of thromboxane synthase inhibition in man. Circulation 72:1194–1201.

    Article  PubMed  CAS  Google Scholar 

  85. Saussy DL, Mais DE, Knapp DR, Halushka PV. 1985. Thromboxane A2 and prostaglandin endoperoxide receptors in platelets and vascular smooth muscle. Circulation 72:1202–1207.

    Article  PubMed  CAS  Google Scholar 

  86. Gresele P, Deckmyn H, Nenci GG, Vermylen J. 1991. Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends Pharmacol Sci 12:158–163.

    Article  PubMed  CAS  Google Scholar 

  87. Quest DW, Wilson TW. 1998. Effects of ridogrel. a thromboxane synthetase inhibitor and receptor antagonist, on blood pressure in spontaneously hypertensive rat. Jpn J Pharmacol 78:479–486.

    Article  PubMed  CAS  Google Scholar 

  88. De Clerck F, Beetens J, de Chaffoy de Courcelles F, Freyne E, Janssen PAJ. 1989. R68O70: Thromboxane A2 synthase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule I. Biochemical profile in vitro. Thromb Haemostatis 61:35–42.

    Google Scholar 

  89. Rolin S, Dogne JM, Michaux C, Delarge J, Masereel B. 2001. Activity of a novel dual thromboxane A2 receptor antagonist and thromboxane synthase inhibitor (BM-573) on platelet function and isolated smooth muscle. Prostaglandins Leukot Essen Fatty Acids 65:67–72.

    Article  CAS  Google Scholar 

  90. Harris AS. 1950. Delayed development of ventricular ectopic rhythms following experimental coronary oclusion. Circulation 1:1318–1328.

    Article  PubMed  CAS  Google Scholar 

  91. Merillon JP, Morgant C, Zygelman M, Abadie E, Charher P, Gourgon R. 1980. Comparison of the hemodynamic and coronary effects of three vasodilator drugs: dipyridamole, nifedipine and glyceryl nitrate. In: 4th International Adalat Symposium. Eds. P Puech and R. Krebs, 41–54. Amsterdam: Excerpta Medica.

    Google Scholar 

  92. Lie JT, Pairolero PC, Holley KE. 1975. Macroscopic enzyme mapping verification of large, homogenous experimental myocardial infarcts of predictable size and location in dogs. J Thorac Cardiovasc Surg 69:599–605.

    PubMed  CAS  Google Scholar 

  93. Gaweher K, Bergmeyer HU. 1974. Lactate determination. In: Methods of Enzymatic Analysis. Ed. HU Bergmeyer, 1492–1495. New York: Academic Press.

    Google Scholar 

  94. Gupta MP, Seth SD, Manchanda SC, Singh Uma. 1987. Effect of nifedipine and hyaluronidase alone and in combination on myocardial preservation in experimental myocardial infarction—A morphological and biochemical profile. In: Myocardial Ischemia. Eds. NS Dhalla, IR Innes and RE Beamish, 311–323. Boston: Martinus Nijhoff Publishing.

    Chapter  Google Scholar 

  95. Seth SD, Gupta MP, Manchanda SC, Singh Uma. 1988. Effect of oxyfednne on cardiac metabolism and infarct size in experimental myocardial infarction. Curr Ther Res 44:278–286.

    CAS  Google Scholar 

  96. Foster G, Bernt E, Bergmeyer HU. 1974. Creatine kinase determination with creatine phosphate as substrate. In: Methods of Enzymatic Analysis. Ed. HU Bergmeyer, 789–793.

    Google Scholar 

  97. Bergmeyer HU, Bernt E. 1974. Lactate dehydrogenase, UV assay with pyruvate and NADH. In: Methods of Enzymatic Analysis. Ed. HU Bergmeyer, 574–579. New York: Academic Press.

    Chapter  Google Scholar 

  98. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193:265–372.

    PubMed  CAS  Google Scholar 

  99. Evers AS, Murphee S, Saffitz JE, Jakschik BA, Needleman P. 1985. Effects of endogenously produced leukotrienes, thromboxanes, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 75:992–999.

    Article  PubMed  CAS  Google Scholar 

  100. Schmitz JM, Appnll PG, Buja LM, Willerson JT, Campbell WB. 1985. Vascular prostaglandin and thromboxane production in a canine model of myocardial ischemia. Cat Res 57:223–231.

    CAS  Google Scholar 

  101. Lewy RI, Wiener L, Walinsky P, Lefer AM, Silver MJ, Smith JB. 1980. Thromboxane release during pacing induced angina pectoris: Possible vasoconstrictor influence on the coronary vasculature. Circulation 61:1165–1177.

    Article  PubMed  CAS  Google Scholar 

  102. Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT. 1981. Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med 304:685–691.

    Article  PubMed  CAS  Google Scholar 

  103. Mehta J, Mehta P, Horalek C. 1983. The significance of platelet- vessel wall prostaglandin equilib-rium during exercise-induced stress. Am Heart J 105:895–900.

    Article  PubMed  CAS  Google Scholar 

  104. Bertele V, Falanga A, Tomasiak M, Chiabrando C, Cerletti C, deGastano G. 1984. Pharmacologic inhibition of thromboxane synthetase and platelet aggregation: modulating role of cyclooxygenase products. Blood 63:1460–1466.

    PubMed  CAS  Google Scholar 

  105. Holman ER, van Jonbergen H-PW, van Dijkman PRM, van der Laarse A, deRoos A, van der Wall EE. 1993. Comparison of magnetic resonance imaging studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 71:1036–1040.

    Article  PubMed  CAS  Google Scholar 

  106. Reimer KA, Jennings RB. 1979. The “wavefront phenomenon” of myocardial ischemic cell death: II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644.

    PubMed  CAS  Google Scholar 

  107. Seth SD, Gupta MP, Manchanda SC, Singh Uma. 1987. Cardioprotective effects of oxyfedrine in experimental myocardial infarction: A morphologic and hemodynamic study. Curr Ther Res 42:846–856.

    CAS  Google Scholar 

  108. Forman R, Cho S, Factor SM, Kirk ES. 1983. Acute myocardial infarct extension into a previously preserved subendocardial region at risk in dogs and patients. Circulation 67:117–124.

    Article  PubMed  CAS  Google Scholar 

  109. Bishop PB. 1984. How well can we measure coronary flow, risk zones and infarct size? In: Therapeutic Approaches to Myocardial Infarct Size Limitation. Eds. J Hearse and DM Yellon, 139–148. New York: Raven Press.

    Google Scholar 

  110. Neely JR, Feuvray D. 1981. Metabolic products and myocardial ischemia. Am J Pathol 102:282–291.

    PubMed  CAS  Google Scholar 

  111. Opie LH. 1990. Myocardial ischemia—metabolic pathways and implications of increased glycolysis. Cardiovasc Drug Ther 4:777–790.

    Article  Google Scholar 

  112. Cross HR, Clarke K, Opie LH, Radda GK. 1995. Is lactate—induced ischemic injury due to decreased lactate/H+ co-transport or inhibition of glycolysis? J Mol Cell Cardiol 27:1369–1381.

    Article  PubMed  CAS  Google Scholar 

  113. Coker SJ. 1984. Further evidence that thromboxane exacerbates arrhythmias: Effects of UK 38485 during coronary artery occlusion and reperfusion in anesthetized greyhounds. J Mol Cell Cardiol 16:633–641.

    Article  PubMed  CAS  Google Scholar 

  114. Lee SJK, Sung YK, Zaragoza AJ. 1970. Effects of nitroglycerin on left ventricular volume and wall tension in patients with ischaemic heart disease. Br Heart J 32:790–794.

    Article  PubMed  CAS  Google Scholar 

  115. Moore EM, Parratt JR. 1972. Effects of oxyfedrine on local myocardial blood flow, myocardial heat production, contractility and wall tension. In: Wirkugsweise von oxyfedrine. Eds. E Gerlach and K Moser, 181–191. Stuttgart, New York: Schattauer Verlage.

    Google Scholar 

  116. Grover GJ, Parham CS. 1989. Role of thromboxane A2 in the control of myocardial O2 supply consumption balance and severity of ischemia during pacing induced ischemia. Cr Res 64:575–582.

    CAS  Google Scholar 

  117. Bailer D, Bretschneider HJ, Helfige G. 1981. A critical look at currently used indices of myocardial oxygen consumption. Basic Res Cardiol 76:181–189.

    Google Scholar 

  118. Golino P, Ambrosio G, Villari B, Ragni M, Focaccia A, Pace L, de Clerk F, Condorlli M, Chiariello M. 1993. Endogenous prostaglandin endoperoxides may alter infarct size in presence of thromboxane synthase inhibition: studies in a rabbit model of coronary artery occlusion—reperfusion. J Am Coll Cardiol 21:493–501.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva D. Seth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seth, S.D., Singh, U., Seth, S. (2004). The Arachidonic Acid Cascade: Thromboxane A2 Antagonism and Synthetase Inhibition in Experimental Myocardial Infarction. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics