Skip to main content

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 299 Accesses

Summary

Cytokinesis plays important roles in smooth muscle cell hyperplasia and hypertrophy. Since in proliferating cells the contractile machinery is of the non-muscle type we tested the hypothesis that one of the regulatory enzymes for cytokinesis, the 210 kDa molecular mass non-muscle type myosin light chain kinase (nmMLCK-210), is present at the cell’s contraction ring. Immunocytochemistry showed the presence of the enzyme in the inter-phase nucleus and suggested it may be a transcription factor; however cis-platin cross-linking studies of DNA to the enzyme did not substantiate this. At anaphase the enzyme migrated to the contraction ring zone of the dividing cell where we had demonstrated the presence of non-muscle myosin heavy chain, α-sm-actin and α-tubulin. Thus a complete contractile machinery existed at this site. As cytokinesis proceeds a mid-body structure develops which is made of a centromeric protein, CENP-F, that is initially bound to the kinetochore, but dissociates from it and migrates to the midbody or telophase disc zone. It is involved in the final stage of cytokinesis. We have obtained preliminary evidence to show that CENP-F is localized to the nucleus in smooth muscle. We conclude that the location of non-muscle myosin light chain kinase at the contraction ring suggests it plays a role in cytokinesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fishkind DJ, Wang Y-C. 1995. New horizons for cytokinesis. Current Opinion in Cell Biology 7:23–31.

    Article  PubMed  CAS  Google Scholar 

  2. Satterwhite LL, Pollard TD. 1992. Cytokinesis. Current Opinion in Cell Biology 4(4):43–52.

    Article  CAS  Google Scholar 

  3. Wolf WA, Chero T-L, Chisholm RL. 1999. Regulation of cytokinesis. Cellular and Molecular Life Sciences 55:108–120.

    Article  PubMed  CAS  Google Scholar 

  4. Glotzer M. 1997. The mechanism and control of cytokinesis. Current Opinion in Cell Biology 9:815–823.

    Article  PubMed  CAS  Google Scholar 

  5. Hales KG, Erfei B Wu J-Q, Adam JC, Yu I-C, Pringle JR. 1999. Cytokinesis: An emerging unified theory for eukaryoties. Current Opinion in Cell Biology 11:717–725.

    Article  PubMed  CAS  Google Scholar 

  6. Ostrow B, Chen P, Chisholm RL. 1994. Expression of a myosin RLC phosphorylation site-mutant complements the cytokinesis and developmental defects of dictyostelium RMLC null cells. J Cell Biol 127:1945–1955.

    Article  PubMed  CAS  Google Scholar 

  7. Andreassen PR, Palmer DK, Wener MH, Margolis RL. 1991. Telophase disc: A new mammalian mitotic organello that bisects telophase cells with a possible function in cytokinesis. J Cell Sci 99: 523–534.

    PubMed  Google Scholar 

  8. Larmarche N, Hall A. 1994. Gaps for rho-related GTPases. Trends Genet 10:436–440.

    Article  Google Scholar 

  9. Narumiya S. The small GTPase rho: cellular functions and signal transduction. J Biochem (Tokyo), 228. 120:215–228.

    Google Scholar 

  10. Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y. 1993. Regulation of cytoplasmic division of Xenopus embryo by rhop21 and its inhibitory GDP/GTP exchange protein (rho GD1). J Cell Biol 120:1187–1195.

    Article  PubMed  CAS  Google Scholar 

  11. Amamo M, Ito M, Kumura K, Fukata Y, Chihara K, Nakano T. 1996. Phosphorylation and activation of myosin by rho-associated kinase. J Biol Chem 271:20246–20249.

    Article  Google Scholar 

  12. Yamochi W, Tanaka K, Nonaka H, Maeda A, Musha T, Takai Y 1994. Growth site localization of Rho I small GTP-binding protein and its involvement in bud formation in S cervisiae. J Cell Biol 125:1077–1093

    Article  PubMed  CAS  Google Scholar 

  13. Madaule P, Eda M, Watanabe N, Fryisawa K, Matsuoka T, HB, et al. 1998. Role of citron kinase as a target of the small GTPase rho in cytokinesis. Nature 394:491–494.

    Article  PubMed  CAS  Google Scholar 

  14. Kong H, Cheng Z-Q, Stephens DL, Stephens NL. 2001. Study of canine airway smooth muscle muscle cell (CASMC) growth: The possible role of non-muscle myosin light chain kinase (NM-MLCK) in cytokinesis. Am J Resp and Cell Mol Biol 163(5):A973.

    Google Scholar 

  15. Swan KA, Severson AF, Cartero JC, Martin PR, HS, et al. 1998. A c.Elegans FH gene required for a late step in embryonic cytokinesis. J Cell Sci 111:2017–2027.

    PubMed  CAS  Google Scholar 

  16. Fishkind DJ, Wang Y-L. 1993. Orientation and 3-D organization of actin filaments in dividing cultured cells. J Cell Biol 123:837–848.

    Article  PubMed  CAS  Google Scholar 

  17. Jordan P, Karess P. 1997. Myosin light chain-activating phosphorylation sites are required for oogenesis in drosophila. J Cell Biol 139:1805–1819.

    Article  PubMed  CAS  Google Scholar 

  18. DeBiasio RL, Lohka MJ, Wilson KL, Post PL, Taylor DL. 1996. Myosin II transport organization and phosphorylation evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol Biol Cell 7:1259–1282.

    Article  PubMed  CAS  Google Scholar 

  19. Ciapa B, Pesando D, Wilding M, Whittaker M. 1994. Cell cycle Ca2+ transients driven by cyclic changes in IP3 levels. Nature 368:875–878.

    Article  PubMed  CAS  Google Scholar 

  20. Bauer F, Urdaci M, Aigle N, Crouzel M. 1993. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytokinesis. Mol Cell Biol 13:5070–5084.

    PubMed  CAS  Google Scholar 

  21. Leo DJ, Reed SI. 1993. Morphogenesis in the yeast cell cycle: regulation by CDC38 and cyclins. J Cell Biol 120:1305–1320.

    Article  Google Scholar 

  22. Konshute N, Yamano H, Niva H, Yoshida T, Yanagida M. 1993. Negative regulation of mitosis by the fission yeast proteins phosphatase. Genes Dev 7:1059–1071.

    Article  Google Scholar 

  23. Egelhoff TT, Lec RJ, Spudich JA. 1993. Dictostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Celll 75:363–371.

    Article  CAS  Google Scholar 

  24. Satterwhite LL, Lohka MJ, Wilson KL, Corden JL. 1992. Phosphorylation of myosin-II RLC by cyclin p34cdc2i a mechansism for the timing of cytokinesis. J Cell Biol 118:595–605.

    Article  PubMed  CAS  Google Scholar 

  25. Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ. 1995. CENP-F is a protein of the nuclear matrix that assembles onto kineto-chores at late G2 and is rapidly degreaded after mitosis. J Cell Biol 130(3):507–518.

    Article  PubMed  CAS  Google Scholar 

  26. Earnshaw WC, Rothfield N. 1985. Identification of a family of human centromeric proteins using autoimmune sera from patients with scleroderma. Chormosoma 19:313–321.

    Article  Google Scholar 

  27. Mabuchi I. 1986. Biochemical aspects of cytokinesis. Int Rev Cytol 101:105–245.

    Google Scholar 

  28. Rappaport R. 1986. Establishment of the mechanism of cytokinesis in animal cells. Int Rev Cytol 105:245.

    Article  PubMed  CAS  Google Scholar 

  29. Bray D, White JG. 1988. Cortical flow in animal cells. Science 239:883–888.

    Article  PubMed  CAS  Google Scholar 

  30. Neujahr R, Albrecht R, Kohler J, Matzner M, Schwartz J, Westphal M. 1998. Microtubulemediated centrosome mobility and the positioning of cleavage furrows in multinmucleate myosin II-null cells. J Cell Sci 111:1227–1240.

    PubMed  CAS  Google Scholar 

  31. Wheatley SP, Wang W. 1996. Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol 135:981–989.

    Article  PubMed  CAS  Google Scholar 

  32. Harris AK, Grewalt SL. 1989. Simulation testing of mechanisms for inducing the formation of the contractile ring in cytokinesis. J Cell Biol 109:2215–2223.

    Article  PubMed  CAS  Google Scholar 

  33. Raich WB, Moran AN, Rothamn JH, Hardin J. 1998. Cytokinesis and midzone microtubule organization in C.Elegans require the kinesion-like portein ZEN-4. Mol Biol Cell 8:2605–2615.

    Google Scholar 

  34. Wolfert L. 1960. The mechanics and mechanism of cleavage. Int Rev Cytol 10:163–216.

    Google Scholar 

  35. Sabry JH, Moores SL, Ryan S, Zhang J-H, Spudich JA. 1997. Myosin heavy chain phosphorylation sites regulate myosin localization during cytokinesis in live cells. Mol Biol Cell 8:2605–2615.

    Article  PubMed  CAS  Google Scholar 

  36. Huber HL, Koessler KK. 1922. The pathology of bronchial asthma. Arch Int Med 30:689.

    Article  Google Scholar 

  37. Heard BE, Hossain S. 1973. Hyperplasia of bornchial muscle in asthma. J Pathol 110:319–331.

    Article  Google Scholar 

  38. Ebina M, Takahashi T, Chuba T, Motomiya M. 1993. Cellular hypertrophy and hyperplasia of aireay smooth muscle underlying bronchial asthma. Am Rev Resp Dis 130:720–726.

    Google Scholar 

  39. Sabonya R. 1984. Quantitative structural alterations in long-standing allergic asthma. Am Rev Respir Dis 130:2289–2922.

    Google Scholar 

  40. Dunnill DMS, Massarella GR, Anderson JA. 1969. Anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bornchitis, and in emphysema. Thorax 24:176–179.

    Article  PubMed  CAS  Google Scholar 

  41. Takizawa T, Wurtbeck WMT. 1971. Mucus and mucous gland size in the major bronchi of patients with chronic bronchitis, asthma and asthmatic bornchitis. Am Rev Resp Dis 104:331–336.

    PubMed  CAS  Google Scholar 

  42. Carroll NG, Elliott J, Morton AR, James AL. 1993. The structure of large and small airways in non-fatal and fatal asthma. Am Rev Resp Dis 147:405–410.

    Article  PubMed  CAS  Google Scholar 

  43. Kuzoano K, Bosken CH, Pare PD, Bai TR. 1993. Small airways dimensions in asthma and in COPD. Am Rev Resp Dis 148:1220–1228.

    Article  Google Scholar 

  44. Colburn JC, Muchnoff CH, Hsu L-C, Slaughter CA. Kamm KE. 1977. Sites phosphorylated in myosin light chain in contracting smooth muscle. J Biol Chem 263(5): 19166–19173.

    Google Scholar 

  45. Morrison DL, Sanghera JE, Stewart J, Sutherland C, Walsh MP, Pelek SL. 1996. Phosphorylation and activation of smMLCK by MAPkinase and CDK-1. Biochem Cell Biol 74:549–557

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stephens, N.L. (2004). Cytokinesis in Smooth Muscle. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics