Skip to main content

Endothelium-Derived Hyperpolarizing Factor(s). Does it Exist and What Role Does it Play in the Regulation of Blood Flow?

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 298 Accesses

Summary

The endothelium is a source of many substances that play important roles in the short- and long-term regulation of the cardiovascular system. In this review we focus on endothelium-derived hyperpolarizing factor, or EDHF. EDHF is often referred to as the “third pathway” as, in addition to nitric oxide (NO) and prostacyclin (PGI2) EDHF seems to play an important role as the “third” endothelium-derived relaxing factor. Considerable debate is on going concerning the nature of EDHF and, indeed, whether a unique molecule even exists. EDHF, by definition, mediates its action by directly, or indirectly, opening K-channels. In most instances the action of EDHF is abolished by the combination of two K-channel toxins, apamin and charybdotoxin; however, the channels that these inhibitors interact with would seem to be located on endothelial rather than vascular smooth muscle cells. The cellular mechanisms whereby EDHF mediates vascular smooth muscle hyperpolarization may involve myo-endothelial gap junctions thus negating the role for a true chemical mediator. Endothelial dysfunction is a common feature of cardiovascular disease, including the cardiovascular dysfunction associated with diabetes, and the role that changes in the nature/function of EDHF play in this process is currently an area of considerable interest. Therapeutic and dietary interventions that restore endothelial function may prove to be of tremendous benefit in the treatment of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Gryglewski R, Bunting S, and Vane JR. 1976. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665.

    Article  PubMed  CAS  Google Scholar 

  2. Furchgott RF, Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RM, Ferrige AG, Moncada S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524-526.

    Article  PubMed  CAS  Google Scholar 

  4. Ding H, Triggle CR. 2001. Relaxing blood Vessels. Pharmaceutical News 8:42–49.

    CAS  Google Scholar 

  5. Feletou M, Vanhoutte PM. 1999. The third pathway: endothelium-dependent hyperpolarization. J Physiol Pharmacol 50:525–534.

    PubMed  CAS  Google Scholar 

  6. Ding H, Triggle CR. 2000. Novel endothelium-derived relaxing factors. Identification of factors and cellular targets. J Pharmacol Toxicol Methods 44:441–452.

    Article  PubMed  CAS  Google Scholar 

  7. McGuire JJ, Ding H, Triggle CR. 2001. Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 79:443–470.

    Article  PubMed  CAS  Google Scholar 

  8. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. 1994. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853.

    Article  PubMed  CAS  Google Scholar 

  9. Mistry DK, Garland CJ. 1998. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  10. Garland JG, McPherson GA. 1992. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 105:429–435.

    Article  PubMed  CAS  Google Scholar 

  11. Parkington HC, Tonta MA, Coleman HA, Tare M. 1995. Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle. J Physiol 484(Pt 2): 469–480.

    PubMed  CAS  Google Scholar 

  12. Murphy ME, Brayden JE. 1995. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 486(Pt 1):47–58.

    PubMed  CAS  Google Scholar 

  13. Dong H, Waldron GJ, Cole WC, Triggle CR. 1998. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Br J Pharmacol 123:821–832.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell WB, Harder DR. 1999. Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circ Res 84:484–488.

    Article  PubMed  CAS  Google Scholar 

  15. Fleming I. 2001. Cytochrome p450 and vascular homeostasis. Circ Res 89:753–762.

    Article  PubMed  CAS  Google Scholar 

  16. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK. 1999. Antiinflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285: 1276–1279.

    Article  PubMed  CAS  Google Scholar 

  17. Janssen LJ. 2002. Are endothelium-derived hyperpolarizing and contracting factors isoprostanes? Trends Pharmacol Sci 23:59–62.

    Article  PubMed  CAS  Google Scholar 

  18. Randall MD, Alexander SP, Bennett T, Boyd EA, Fry JR, Gardiner SM, Kemp PA, McCulloch AI, Kendall DA. 1996. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun 229:114–120.

    Article  PubMed  CAS  Google Scholar 

  19. Zakhary R, Gaine SP, Dinerman JL, Ruat M, Flavahan NA, Snyder SH. 1996. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci USA 93:795–798.

    Article  PubMed  CAS  Google Scholar 

  20. Barlow RS, White RE. 1998. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275:H1283–H1289.

    PubMed  CAS  Google Scholar 

  21. Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y. 1998. Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated K4- channels. Heart Vessels 13: 9–17.

    Article  PubMed  CAS  Google Scholar 

  22. Bychkov R, Pieper K, Ried C, Milosheva M, Bychkov E, Luft FC, Haller H. 1999. Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation 99:1719–1725.

    Article  PubMed  CAS  Google Scholar 

  23. Beny JL, derWeid PY. 1991. Hydrogen peroxide: an endogenous smooth muscle cell hyperpolarizing factor. Biochem Biophys Res Commun 176:378–384.

    Article  PubMed  CAS  Google Scholar 

  24. Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE. 1998. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett 438:161–164.

    Article  PubMed  CAS  Google Scholar 

  25. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. 2000. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530.

    Article  PubMed  CAS  Google Scholar 

  26. Watkins MT, Patton GM, Soler HM, Albadawi H, Humphries DE, Evans JE, Kadowaki H. 1999. Synthesis of 8-epi-prostaglandin F2alpha by human endothelial cells: role of prostaglandin H2 synthase. Biochem J 344 Pt 3:747–754.

    Article  Google Scholar 

  27. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. 1998. K+ is an endothelium-denved hyperpolarizing factor in rat arteries. Nature 396:269–272.

    Article  PubMed  CAS  Google Scholar 

  28. Vanhoutte PM. 1998. Vascular biology. Old-timer makes a comeback. Nature 396:213, 215–213, 216.

    Article  PubMed  CAS  Google Scholar 

  29. Kumar NM, Gilula NB. 1996. The gap junction communication channel. Cell 84:381–388.

    Article  PubMed  CAS  Google Scholar 

  30. Christ GJ, Spray DC, el Sabban M, Moore LK, Brink PR. 1996. Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res 79:631–646.

    Article  PubMed  CAS  Google Scholar 

  31. Christ GJ, Brink PR. 1999. Analysis of the presence and physiological relevance of subconducting states of Connexin43-denved gap junction channels in cultured human corporal vascular smooth muscle cells. Circ Res 84:797–803.

    Article  PubMed  CAS  Google Scholar 

  32. van Kempen MJ, Jongsma HJ. 1999. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 112:479–486.

    Article  PubMed  Google Scholar 

  33. Little TL, Beyer EC, Duling BR. 1995. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268:H729–H739.

    PubMed  CAS  Google Scholar 

  34. Brink P. 2000. Gap junction voltage dependence. A clear picture emerges. J Gen Physiol 116:1 1–12.

    Google Scholar 

  35. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. 1998. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234.

    Article  PubMed  CAS  Google Scholar 

  36. Rubanyi GM. 1993. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 22 Suppl 4:S1–14.

    Article  Google Scholar 

  37. De Vnese AS, Verbeuren TJ, Van d V, Lameire NH, Vanhoutte PM. 2000. Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974.

    Article  Google Scholar 

  38. Sun J, Sui X, Bradbury JA, Zeldin DC, Come MS, Liao JK. 2002. Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ Res 90: 1020–1027.

    Article  PubMed  CAS  Google Scholar 

  39. Yang B, Graham L, Dikalov S, Mason RP, Falck JR, Liao JK, Zeldin DC. 2001. Overexpression ot cytochrome P450 CYP2J2 protects against hypoxia-reoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol 60:310–320.

    PubMed  CAS  Google Scholar 

  40. Pomposiello SI, Carroll MA, Falck JR, McGiff JC. 2001. Epoxyeicosatnenoic acid-mediated renal vasodilation to arachidonic acid is enhanced in SHR. Hypertension 37:887–893.

    Article  PubMed  CAS  Google Scholar 

  41. Pannirselvam M, Verma S, Anderson TJ, Triggle CR. 2002. Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability. Br J Pharmacol 136:255–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Triggle, C.R., Pannirselvam, M., Anderson, T.J., Ding, H. (2004). Endothelium-Derived Hyperpolarizing Factor(s). Does it Exist and What Role Does it Play in the Regulation of Blood Flow?. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics