Skip to main content

Mechanisms of Cardioprotection against Ischemia Reperfusion Injury

  • Chapter

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

Summary

The high incidence of morbidity and mortality associated with acute myocardial ischemia (AMI) has stimulated substantial research to salvage the dying myocardium. Early restoration of flow to the ischemic myocardium by different interventions has significantly reduced the mortality associated with the acute coronary syndrome but could not improve the morbidity. Accordingly, the possibility of reperfusion injury, and not ischemic injury, as the cause of post ischemic myocardial dysfunction is being considered seriously. Ventricular arrhythmias, myocardial stunning and cell death are the prominent sequels to post ischemic reperfusion. Although thrombolytic and other therapies like percutaneous transluminal angioplasty and coronary artery bypass grafting have significantly increased the rate of survival of AMI patients, these procedures have also spurred interest in the phenomena of ischemia reperfusion injury. In view of the immense clinical consequences of ischemia reperfusion in humans, a large number of animal studies have been carried out to understand the pathophysiology and therapy. This article elaborates different mechanisms which have been suggested to cause ischemia reperfusion injury as well as therapeutic modalities that have shown promise in reducing the associated cardiac abnormalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. 1973. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985.

    Article  Google Scholar 

  2. Braunwald E, Kloner RA. 1982. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  3. Tennant R, Wiggers C. 1931. The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361.

    Google Scholar 

  4. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. 1960. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78.

    PubMed  Google Scholar 

  5. Bolli R. 1992. Myocardial “stunning” in man. Circulation 86:1671–1691.

    Article  PubMed  CAS  Google Scholar 

  6. Diamond GA, Forrester JS, deLuz PL, Wyatt HL, Swan HJ. 1978. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J 95:204–209.

    Article  PubMed  CAS  Google Scholar 

  7. Rahimtoola SH. 1989. The hibernating myocardium. Am Heart J 117:211–221.

    Article  PubMed  CAS  Google Scholar 

  8. Bermer M, Hearse DJ, Manning AS. 1986. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free radical” interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 58:331–340.

    Article  Google Scholar 

  9. Connaughton M, Kelly FJ, Haddock PS, Hearse DJ, Shattock MJ. 1996. Ventricular arrhythmias induced by ischaemia-reperfusion are unaffected by myocardial glutathione depletion. J Mol Cell Cardiol 28:679–688.

    Article  PubMed  CAS  Google Scholar 

  10. Zweier JL, Kuppusamy P, Williams R, Rayburn BK, Smith D, Weisfeldt ML, Flaherty JT 1989. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem 264:18890–18895.

    PubMed  CAS  Google Scholar 

  11. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. 1989. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622.

    Article  PubMed  CAS  Google Scholar 

  12. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. 1988. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl-nitrone. J Clin Invest 82:476–485.

    Article  PubMed  CAS  Google Scholar 

  13. Chance B, Sies H, Boveris A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    PubMed  CAS  Google Scholar 

  14. Boveris A, Cadenas E, Stoppani AO. 1976. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444.

    PubMed  CAS  Google Scholar 

  15. Cadenas E, Davies KJ. 2000. Mitochondrial free radical generation, oxidative stress and aging. Free Radical Biol Med 29:222–230.

    Article  CAS  Google Scholar 

  16. Raha S, Robinson BH. 2000. Mitochondria, oxygen free radicals, disease and aging. Trends Biochem Sci 25:502–508.

    Article  PubMed  CAS  Google Scholar 

  17. Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S, Ikegami Y. 1988. Mechanism of O2-generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport system. Biochem Biophys Acta 936:377–385.

    Article  PubMed  CAS  Google Scholar 

  18. Augustin W, Wiswedel I, Noack H, Reinheckel T, Reichelt O. 1997. Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria. Mol Cell Biochem 174:199–205.

    Article  PubMed  CAS  Google Scholar 

  19. Griendling KK, Sorescu D, Ushio-Fukai M. 2000. NAD(P)H oxidase: role in cardiovascularbiology and disease. Circ Res 86:494–501.

    Article  PubMed  CAS  Google Scholar 

  20. Fenton H. 1894. Oxidation of tartaric acid in the presence of iron. J Chem Soc:899.

    Google Scholar 

  21. Haber F, Weiss J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc A:332.

    Google Scholar 

  22. Suzuki YJ, Ford GD. 1999. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 31:345–353.

    Article  PubMed  CAS  Google Scholar 

  23. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. 1994. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141–1148.

    Article  PubMed  CAS  Google Scholar 

  24. Mohazzab KM, Kaminski PM, Wolin MS. 1994. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 266:2568–2572.

    Google Scholar 

  25. Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, Cohen RA. 1995. An NADPH oxidase super-oxide-generating system in the rabbit aorta. Am J Physiol 268:2274–2280.

    Google Scholar 

  26. Boveris A. 1984. Determination of the production of the superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435.

    Article  PubMed  CAS  Google Scholar 

  27. Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ, Wallace DC. 1999. Mitochondrial disease in superoxide dismutase2 mutant mice. Proc Natl Acad Sci USA 96:846–851.

    Article  PubMed  CAS  Google Scholar 

  28. Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC. 1998. A novel neurological phenotype in mice lacking mitochondrial manganese sueroxide dismutase. Natl Genet 18:159–163.

    Article  CAS  Google Scholar 

  29. Kuppusamy P, Zweier JL. 1989. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem 264:9880–9884.

    PubMed  CAS  Google Scholar 

  30. Kim KS, Takeda K, Sethi R, Pracyk JB, Tanaka K, Zhou YF, Yu ZX, Ferrans VJ, Bruder JT, Kovesdi I, Irani K, Goldschmidt-Clermont P, Finkel T. 1998. Protection from reoxygenation injury by inhibition of rac1. J Clin Invest 101:1821–1826.

    Article  PubMed  CAS  Google Scholar 

  31. Li PF, Dietz R, von Harsdorf R. 1999. Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta 1 in cardiac fibroblasts. FEBS Lett 448:206–210.

    Article  PubMed  CAS  Google Scholar 

  32. Kukreja RC, Hess ML. 1992. The oxygen free radical system: from equations through membrane protein interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655.

    Article  PubMed  CAS  Google Scholar 

  33. Opie L. 1992. Cardiac metabolism: emergence, decline and resurgence. Part II. Cardiovasc Res 26:817–830.

    Article  PubMed  CAS  Google Scholar 

  34. Hess ML, Okabe E, Ash P, Kontos HA. 1984. Free radical mediation of the effects of acidosis on the calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates. Cardiovasc Res 18:149–157.

    Article  PubMed  CAS  Google Scholar 

  35. Okabe E, Hess ML, Oyama M, Ito H. 1983. Characterization of the free radical mediated damage to canine cardiac sarcoplasmic reticulum. Arch Biochem Biophys 225:164–177.

    Article  PubMed  CAS  Google Scholar 

  36. Okabe E, Kuse K, Sekishita T, Suyama N, Tanaka K, Ito H. 1991. The effect of ryanodine on oxygen free radical induced dysfunction of cardiac sarcoplasmic reticulum. J Pharmacol Exp Ther 256:868–875.

    PubMed  CAS  Google Scholar 

  37. Okabe E, Odajima C, Taga R, Kukreja RC, Hess ML, Ito H. 1988. The effect of oxygen free radical on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum. Mol Pharmacol 34:388–394.

    PubMed  CAS  Google Scholar 

  38. Midori K, Okabe E. 1998. Superoxide anion radical-triggered Ca2+ release from the cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol Pharmacol 53:497–503.

    Google Scholar 

  39. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS. 1999. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol 277:584–594.

    Google Scholar 

  40. Netticadan T, Temsah R, Osada M, Dhalla NS. 1999. Status of Ca2+/calmodulin protein kinase phosphorylation of cardiac SR proteins in ischemia-reperfusion. Am J Physiol 277:384–391.

    Google Scholar 

  41. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624.

    Article  PubMed  CAS  Google Scholar 

  42. Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:1424–1437.

    Google Scholar 

  43. Pryor WA, Squadrito GL. 1995. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:699–722.

    Google Scholar 

  44. Radi R, Beckman JS, Bush KM, Freeman BA. 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487.

    Article  PubMed  CAS  Google Scholar 

  45. Lin KT, Xue JY, Sun FF, Wong PY. 1997. Reactive oxygen species participate in peroxynitrite-induced apoptosis in HL-60 cells. Biochem Biophys Res Commun 230:115–119.

    Article  PubMed  CAS  Google Scholar 

  46. Van der Vliet A, Smith D, O’Neill CA, Kaur H, Darley-Usmar V, Cross CE, Halliwell B. 1994. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J 303:295–301.

    PubMed  Google Scholar 

  47. Ma XL, Lopez BL, Liu GL, Christopher TA, Ischiropoulos H. 1997. Peroxynitrite aggravates myocardial reperfusion injury- in the isolated perfused rat heart. Cardiovasc Res 36:195–204.

    Article  PubMed  CAS  Google Scholar 

  48. Squadrito GL, Pryor WA. 1998. The nature of reactive species in systems that produce peroxynitrite. Chem Res Toxicol 11:718–719.

    Article  PubMed  CAS  Google Scholar 

  49. Dinerman JL, Lowenstein CJ, Snyder SH. 1993. Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res 73:217–222.

    Article  PubMed  CAS  Google Scholar 

  50. Liu P, Hock CE, Nagele R, Wong PY. 1997. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 272:2327–2336.

    Google Scholar 

  51. Yasmin W, Strynadka KD, Schulz R. 1997. Generation of peroxynitrite contributes to lschemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422–432.

    Article  PubMed  CAS  Google Scholar 

  52. Soszvnski M, Bartosz G. 1996. Effect of peroxvnitrite on erythrocytes. Biochim Biophvs Acta 1291:107–114.

    Article  Google Scholar 

  53. Kondo H, Takahashi M, Niki E. 1997. Peroxynitrite-induced hemolysis of human erythrocytes and its inhibition by antioxidants. FEBS Lett 413:236–238.

    Article  PubMed  CAS  Google Scholar 

  54. Lin KT, Xue JY, Wong PY. 1997. Peroxynitrite. An apoptotic agent in HL-60 cells. Adv Exp Med Biol 407:413–419.

    Article  PubMed  CAS  Google Scholar 

  55. Cheung PY, Danial H, Jong J, Schulz R. 1998. Thiols protect the inhibition of myocardial aconitase by peroxynitrite. Arch Biochem Biophys 350:104–108.

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki S, Kaneko M, Chapman DC, Dhalla NS. 1991. Alterations in cardiac contractile proteins due to oxygen free radicals. Biochim Biophys Acta 1074:95–100.

    Article  PubMed  CAS  Google Scholar 

  57. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O. 1985. Oxygen-mediated myocardial damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 17:937–945.

    Article  PubMed  CAS  Google Scholar 

  58. Bauer SF, Schwarz K, Ruegg JC. 1989. Glutathione alters calcium responsiveness of cardiac skinned fibers. Basic Res Cardiol 84:591–596.

    Article  PubMed  CAS  Google Scholar 

  59. Grinwald PM. 1982. Calcium uptake during post-ischemic reperfusion in the isolated rat heart: influence of extracellular sodium. J Mol Cell Cardiol 14:359–365.

    Article  PubMed  CAS  Google Scholar 

  60. Grinwald PM. 1992. Sodium pump failure in hypoxia and reoxygenation. J Mol Cell Cardiol 24:1393–1398.

    Article  PubMed  CAS  Google Scholar 

  61. Kato K, Shao Q, Elimban V, Lukas A, Dhalla NS. 1998. Mechanism of depression in cardiac sarcolemmal Na+-K+-ATPase by hypochlorous acid. Am J Physiol 275:826–831.

    Google Scholar 

  62. Carrozza JP Jr, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan J P. 1992. Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 71:1334–1340.

    Article  PubMed  CAS  Google Scholar 

  63. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E. 1997. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80:393–399.

    PubMed  CAS  Google Scholar 

  64. Leem CH, Lagadic-Gossmann D, Vaughan-Jones RD. 1999. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol 517:159–180.

    Article  PubMed  CAS  Google Scholar 

  65. Wakabayashi S, Shigekawa M, Pouyssegur J. 1997. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77:51–74.

    PubMed  CAS  Google Scholar 

  66. Aronson PS. 1985. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol 47:545–560.

    Article  PubMed  CAS  Google Scholar 

  67. Counillon L, Pouyssegur J. 1995. Structure-function studies and molecular regulation of the growth factor activatable sodium-hydrogen exchanger (NHE-1). Cardiovasc Res 29:147–154.

    PubMed  CAS  Google Scholar 

  68. Wu ML, Vaughan-Jones RD. 1997. Interaction between Na+ and H+ ions on Na-H exchange in sheep cardiac Purkinje fibers. J Mol Cell Cardiol 29:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  69. Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA. 1998. Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res 82: 1053–1062.

    Article  PubMed  CAS  Google Scholar 

  70. Hoque AN, Haist JV, Karmazyn M. 1997. Na(+)-H+ exchange inhibition protects against mechanical, ultrastructural, and biochemical impairment induced by low concentrations of lysophos-phatidylcholine in isolated rat hearts. Circ Res 80:95–102.

    Article  PubMed  CAS  Google Scholar 

  71. Frelin C,Vigne P, Lazdunski M. 1984. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem 259:8880–8885.

    PubMed  CAS  Google Scholar 

  72. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusomoto K. 1999. The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res 85:777-786.

    Article  PubMed  CAS  Google Scholar 

  73. Griese M, Perlitz V, Jungling E, Kammermeier H. 1988. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high K+-perfusion. J Mol Cell Cardiol 20:1189–1201.

    Article  PubMed  CAS  Google Scholar 

  74. Kim D, Cragoe EJ Jr, Smith TW. 1987. Relations among sodium pump inhibition, Na-Ca and Na-H exchange activities, and Ca-H interaction in cultured chick heart cells. Circ Res 60: 185–193.

    Article  PubMed  CAS  Google Scholar 

  75. Duan J, Moffat MP. 1992. Contractile and electrophysiologic effects of realkalization in cardiac tissues: role of Na/H exchange and increased [Ca]i. Adv Exp Med Biol 311:435–436.

    Article  PubMed  CAS  Google Scholar 

  76. Cross HR, Lu L, Steenbergen C, Philipson KD, Murphy E. 1998. Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ Res 83:1215–1223.

    Article  PubMed  CAS  Google Scholar 

  77. Egger M, Niggli E. 1999. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol 168:107–130.

    Article  PubMed  CAS  Google Scholar 

  78. Pierce GN, Meng H. 1992. The role of sodium-proton exchange in ischemic/reperfusion injury in the heart. Na(+)-H+ exchange and ischemic heart disease. Am J Cardiovasc Pathol 4:91–102.

    PubMed  CAS  Google Scholar 

  79. Kusuoka H, Camilion de Hurtado MC, Marban E. 1993. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution. J Am Coll Cardiol 21:240–248.

    Article  PubMed  CAS  Google Scholar 

  80. Ladilov Y, Haffner S, Balser-Schafer C, Maxeiner H, Piper HM. 1999. Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger. Am J Physiol 276: 68–76.

    Google Scholar 

  81. Lochner A, Genade S, Tromp E, Theron S, Trollip G. 1998. Postcardioplegic myocardial recovery: effects of halothane, nifedipine, HOE 694, and quinacrine. Cardiovasc Drugs Ther 12:267–277.

    Article  PubMed  CAS  Google Scholar 

  82. Murry CE, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  83. Murry CE, Richard VJ, Jennings RB, Reimer KA. 1991. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 260:796–804.

    Google Scholar 

  84. Birnbaum Y, Hale SL, Kloner RA. 1996. Progressive decrease in the ST segment elevation during ischemic preconditioning: is it related to recruitment of collateral vessels? J Mol Cell Cardiol 28:1493–1499.

    Article  PubMed  CAS  Google Scholar 

  85. Sebbag L, Brooks SE, Jennings RB. 1997. Cardioprotection, lost 3 hours after ischemic preconditioning (PC) can be fully restored by repeated preconditioning in dogs: significance of ST-segment changes for detecting cardioprotection. Eur Heart J 18:162.

    Google Scholar 

  86. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. 1993. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  87. Marber MS, Latchman DS, Walker JM, Yellon DM. 1993. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272.

    Article  PubMed  CAS  Google Scholar 

  88. Tang XL, Qiu Y, Park SW, Sun JZ, Kalya A, Bolli R. 1996. Time course of late preconditioning against myocardial stunning in conscious pigs. Circ Res 79:424–434.

    Article  PubMed  CAS  Google Scholar 

  89. Bolli R. 2000. The late phase of preconditioning. Circ Res 87:972–983.

    Article  PubMed  CAS  Google Scholar 

  90. Jennings RB, Sebbag L, Schwartz LM, Crago MS, Reimer KA. 2001. Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection. J Mol Cell Cardiol 33: 1571–1588.

    Article  PubMed  CAS  Google Scholar 

  91. Murry CE, Richard VJ, Reimer KA, Jennings RB. 1990. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66: 913–931.

    Article  PubMed  CAS  Google Scholar 

  92. Qian YZ, Shipley JB, Levasseur JE, Kukreja RC. 1998. Dissociation of heat shock proteins expression with ischemic tolerance by whole body hyperthermia in rat heart. J Mol Cell Cardiol 30: 1163–1172.

    Article  PubMed  CAS  Google Scholar 

  93. Bolli R, Bhatti ZA, Tang XL, Qiu Y, Zhang Q, Guo Y, Jadoon AK. 1997. Evidence that late preconditioning against myocardial stunning in conscious rabbits is triggered by the generation of nitric oxide. Circles 81:42–52.

    CAS  Google Scholar 

  94. Drury AN, Szent-Gyorgyi A. 1929. The physiological activity of adenine compound with special reference to their action upon the mammalian heart. J Physiol (Lond) 68:213–237.

    CAS  Google Scholar 

  95. Berne RM. 1963. Cardiac nucleotides in hypoxia: Possible role in regulation of coronary blood flow. Am J Physiol 204:317–332.

    PubMed  CAS  Google Scholar 

  96. Baxter GF, Marber MS, Patel VC, Yellon DM. 1994. Adenosine receptor involvement in a delayed phase or myocardial protection 24 hours after ischemic preconditioning. Circulation 90:2993–3000.

    Article  PubMed  CAS  Google Scholar 

  97. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. 1991. Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 84:350–356.

    Article  PubMed  CAS  Google Scholar 

  98. Grover GJ, Sleph PG, Dzwonczyk S. 1992. Role of myocardial ATP sensitive potassium channels in mediating preconditioning in dog heart and their possible interaction with adenosine Al receptors. Circulation 86:1310-1316.

    Article  PubMed  CAS  Google Scholar 

  99. Bernardo NL, D Angelo M, Okubo S, Joy A, Kukreja RC. 1999. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 276:1323–1330.

    Google Scholar 

  100. Takano H, Bolli R, Black RG Jr, Kodam E, Tang XL, Yang Z, Bhattacharya S, Auchampach JA. 2001. A(1) or A(3) adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res 88:520–528.

    Article  PubMed  CAS  Google Scholar 

  101. Fryer RM, Hsu AK, Eells JT, Nagase H, Gross GJ. 1999. Opioid-induced second window of cardioprotection: potential role of mitochondrial KATP channels. Circ Res 84:846–851.

    Article  PubMed  CAS  Google Scholar 

  102. Hoag JB, Qian YZ, Nayeem MA, D’Angelo M, Kukreja RC. 1997. ATP-sensitive potassium channel mediates delayed ischemic protection by heat stress in rabbit heart. Am J Physiol 273: 2458–2464.

    Google Scholar 

  103. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. 1997. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  104. Auchampach JA, Grover GJ, Gross GJ. 1992. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 26:1054–1062.

    Article  PubMed  CAS  Google Scholar 

  105. Gross GJ, Auchampach JA. 1992. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Ore Res 70:223–233.

    CAS  Google Scholar 

  106. Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, Penta de Peppo A, Chiariello L, Gioffre PA. 1994. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 90:700–705.

    Article  PubMed  CAS  Google Scholar 

  107. Kirsch GE, Codina J, Birnbaumer L, Brown AM. 1990. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259:820–826.

    Google Scholar 

  108. Hu K, Duan D, Li GR, Nattel S. 1996. Protein kinase C activates ATP-sensitive K+ current in human and rabbit ventricular myocytes. Circ Res 78:492–498.

    Article  PubMed  CAS  Google Scholar 

  109. Speechly-Dick ME, Grover GJ, Yellon DM. 1995. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. Circ Res 77:1030–1035.

    Article  PubMed  CAS  Google Scholar 

  110. Yamaguchi F, Nasa Y, Yabe K, Ohba S, Hashizume Y, Ohaku H, Furuhama K, Takeo S. 1997. Activation of cardiac muscarinic receptor and ischemic preconditioning effects in situ rat heart. Heart Vessels 12:74–83.

    Article  PubMed  CAS  Google Scholar 

  111. Iliodromitis EK, Papadopoulos CC, Markianos M, Paraskevaidis IA, Kyriakides ZS, Kremastinos DT. 1996. Alterations in circulating cyclic guanosine monophosphate (c-GMP) during short and long ischemia in preconditioning. Basic Res Cardiol 91:234–239.

    Article  PubMed  CAS  Google Scholar 

  112. Han J, Kim N, Kim E, Ho WK, Earm YE. 2001. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276:22140–22147.

    Article  PubMed  CAS  Google Scholar 

  113. Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  114. D’Alonzo AJ, Darbenzio RB, Parham CS, Grover GJ. 1992. Effects of intracoronary cromakalim on postischaemic contractile function and action potential duration. Cardiovasc Res 26:1046–1053.

    Article  Google Scholar 

  115. Shaw RM, Rudy Y. 1997. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc Res 35:256–272.

    Article  PubMed  CAS  Google Scholar 

  116. Cole WC, McPherson CD, Sontag D. 1991. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 69:571–581.

    Article  PubMed  CAS  Google Scholar 

  117. Grover GJ, Newburger J, Sleph PG, Dzwonczyk S, Taylor SC, Ahmed SZ, Atwal KS. 1991. Cardioprotective effects of the potassium channel opener cromakalim: stereoselectivity and effects on myocardial adenine nucleotides. J Pharmacol Exp Ther 257:156–162.

    PubMed  CAS  Google Scholar 

  118. McPherson CD, Pierce GN, Cole WC. 1993. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol 265:1809–1818.

    Google Scholar 

  119. Pignac J, Bourgouin J, Dumont L. 1994. Cold cardioplegia and the K+ channel modulator aprikalim (RP 52891): improved cardioprotection in isolated ischemic rabbit hearts. Can J Physiol Pharmacol 72:126–132.

    Article  PubMed  CAS  Google Scholar 

  120. Yao Z, Gross GJ. 1994. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 89:1769–1775.

    Article  PubMed  CAS  Google Scholar 

  121. Grover GJ, D’Alonzo AJ, Parham CS, Darbenzio RB. 1995. Cardioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol 26:145–152.

    Article  PubMed  CAS  Google Scholar 

  122. Hamada K, Yamazaki J, Nagao T. 1998. Shortening of action potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener. J Mol Cell Cardiol 30:1369–1379.

    Article  PubMed  CAS  Google Scholar 

  123. Jovanovic N, Jovanovic S, Jovanovic A, Terzic A. 1999. Gene delivery of Kir6.2/SUR2A in conjunction with pinacidil handles intracellular Ca2+ homeostasis under metabolic stress. FASEB J 13:923–929.

    PubMed  CAS  Google Scholar 

  124. Miki T, Tashiro F, Iwanaga T, Nagashima K, Yoshitomi H, Aihara H, Nitta Y, Gonoi T, Inagaki N, Miyazaki J, Seino S. 1997. Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. Proc Natl Acad Sci USA 94:11969–11973.

    Article  PubMed  CAS  Google Scholar 

  125. Baxter GF, Goma FM, Yellon DM. 1995. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium. Br J Pharmacol 115:222–224.

    Article  PubMed  CAS  Google Scholar 

  126. Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. 1997. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81: 404–414.

    Article  PubMed  CAS  Google Scholar 

  127. Qiu Y, Ping P, Tang XL, Manchikalapudi S, Rizvi A, Zhang J, Takano H, Wu WJ, Teschner S, Bolli R. 1998. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest 101:2182–2198.

    Article  PubMed  CAS  Google Scholar 

  128. Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC, Banerjee S, Dawn B, Balafonova Z, Bolli R. 1999. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84:587–604.

    Article  PubMed  CAS  Google Scholar 

  129. Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. 1998. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 83:73–84.

    Article  PubMed  CAS  Google Scholar 

  130. Dawn B, Xuan YT, Qiu Y, Takano H, Tang XL, Ping P, Banerjee S, Hill M, Bolli R. 1999. Bifunctional role of protein tyrosine kinases in late preconditioning against myocardial stunning in conscious rabbits. Circ Res 85:1154–1163.

    Article  PubMed  CAS  Google Scholar 

  131. Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R. 1999. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 85:542–550.

    Article  PubMed  CAS  Google Scholar 

  132. Holaday JW. 1983. Cardiovascular effects of endogenous opiate systems. Annu Rev Pharmacol Toxicol 23:541–594.

    Article  PubMed  CAS  Google Scholar 

  133. Liang CS, Imai N, Stone CK, Woolf PD, Kawashima S, Tuttle RR. 1987. The role of endogenous opioids in congestive heart failure: effects of nalmefene on systemic and regional hemodynamics in dogs. Circulation 75:443–451.

    Article  PubMed  CAS  Google Scholar 

  134. Lee AY, Chen YT, Kan MN, P’eng FK, Chai CY, Kuo JS. 1992. Consequences of opiate agonist and antagonist in myocardial ischaemia suggest a role of endogenous opioid peptides in ischaemic heart disease. Cardiovasc Res 26:392–395.

    Article  PubMed  CAS  Google Scholar 

  135. Maslov LN, Krylatov AV, Lishmanov YB. 1996. On the involvement of endogenous opiate receptor agonists in the antiarrhythmic effects of adaptation. Bull Exp Biol Med 121:20–21.

    Article  Google Scholar 

  136. Schultz JE, Rose E, Yao Z, Gross GJ. 1995. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 268:2157–2161.

    Google Scholar 

  137. Schultz JJ, Hsu AK, Gross GJ. 1997. Ischemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol 29:1355–1362.

    Article  PubMed  CAS  Google Scholar 

  138. Liang BT, Gross GJ. 1999. Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circ Res 84:1396–1400.

    Article  PubMed  CAS  Google Scholar 

  139. Tang XL, Takano H, Rizvi A, Turrens JF, Qiu Y, Wu WJ, Zhang Q, Bolli R. 2002. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol Heart Circ Physiol 282:281–291.

    Google Scholar 

  140. Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. 1996. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 97:562–576.

    Article  PubMed  CAS  Google Scholar 

  141. Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M. 1998. A “second window of protection” occurs 24 h after ischemic preconditioning in the rat heart. J Mol Cell Cardiol 30:1181–1189.

    Article  PubMed  CAS  Google Scholar 

  142. Tang XL, Takano H, Rizvi A, Turrens JF, Qiu Y, Wu WJ, Zhang Q, Bolli R. 2002. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol Heart Circ Physiol 282:281–291.

    Google Scholar 

  143. Maldonado C, Qiu Y, Tang XL, Cohen MV, Auchampach J, Bolli R. 1997. Role of adenosine receptors in late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol 273: 1324–1332.

    Google Scholar 

  144. Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jadoon AK. 1997. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Cire Res 81:1094–1107.

    Article  CAS  Google Scholar 

  145. Takano H, Manchikalapudi S, Tang XL, Qiu Y, Rizvi A, Jadoon AK, Zhang Q, Bolli R. 1998. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation 98:441–449.

    Article  PubMed  CAS  Google Scholar 

  146. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. 1999. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512.

    Article  PubMed  CAS  Google Scholar 

  147. Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R. 2001. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 103: 2935–2941.

    Article  PubMed  CAS  Google Scholar 

  148. Gross SS, Wolin MS. 1995. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57: 737–769.

    Article  PubMed  CAS  Google Scholar 

  149. Kelly RA, Balligand JL, Smith TW. 1996. Nitric oxide and cardiac function. Circ Res 79:363–380.

    Article  PubMed  CAS  Google Scholar 

  150. Takano H, Tang XL, Qui Y, Bolli R. 1998. The tetrahydrobiopterin synthesis inhibitor N-acetylsertotonin abrogates late preconditioning against myocardial stunning in conscious rabbits. Circulation (suppl.I): 1–586. Abstract.

    Google Scholar 

  151. Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH. 1998. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 30:2281–2289.

    Article  PubMed  CAS  Google Scholar 

  152. Ibrahim W, Lee US, Yen HC, St Clair DK, Chow CK. 2000. Antioxidant and oxidative status in tissues of manganese superoxide dismutase transgenic mice. Free Radic Biol Med 28:397–402.

    Article  PubMed  CAS  Google Scholar 

  153. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. 1985. Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 72:915–921.

    Article  PubMed  CAS  Google Scholar 

  154. Przyklenk K, Kloner RA. 1986. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium”. Circ Res 58:148–156.

    Article  PubMed  CAS  Google Scholar 

  155. Gross GJ, Farber NE, Hardman HF, Warltier DC. 1986. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 250:372–377.

    Google Scholar 

  156. Nejima J, Knight DR, Fallon JT, Uemura N, Manders WT, Canfield DR, Cohen MV, Vatner SF. 1989. Superoxide dismutase reduces reperfusion arrhythmias but fails to salvage regional function or myocardium at risk in conscious dogs. Circulation 79:143–153.

    Article  PubMed  CAS  Google Scholar 

  157. Mehta JL, Nichols WW, Saldeen TG, Chandna VK, Nicolini FA, Lawson DL, ter Riet MF. 1990. Superoxide dismutase decreases reperfusion arrhythmias and preserves myocardial function during thrombolysis with tissue plasminogen activator. J Cardiovasc Pharmacol 16:112–120.

    Article  PubMed  CAS  Google Scholar 

  158. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. 1989. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622.

    Article  PubMed  CAS  Google Scholar 

  159. Bolli R, Zhu WX, Hartley CJ, Michael LH, Repine JE, Hess ML, Kukreja RC, Roberts R. 1987. Attenuation of dysfunction in the postischemic ‘stunned’ myocardium by dimethylthiourea. Circulation 76:458–468.

    Article  PubMed  CAS  Google Scholar 

  160. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. N-2-mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. 1986. J Am Coll Cardiol 8: 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  161. Altavilla D, Deodato B, Campo GM, Arlotta M, Miano M, Squadrito G, Saitta A, Cucinotta D, Ceccarelli S, Ferlito M, Tringali M, Minutoli L, Caputi AP, Squadrito F. 2000. IRFI 042, a novel dual vitamin E-like antioxidant, inhibits activation of nuclear factor-kappaβ and reduces the inflammatory response in myocardial ischemia-reperfusion injury. Cardiovasc Res 47:515–528.

    Article  PubMed  CAS  Google Scholar 

  162. Shimizu M, Wang QD, Sjoquist PO, Ryden L. 1998. The lipid peroxidation inhibitor indenoin-dole H290/51 protects myocardium at risk of injury induced by ischemia-reperfusion. Free Radic Biol Med 24:726–731.

    Article  PubMed  CAS  Google Scholar 

  163. Pintus G, Pinna GG, Ventura C. 1994. Evaluation of opioid peptide gene expression by solution hybridization RNase protection. Boll Soc Ital Biol Sper 70:213–219.

    PubMed  CAS  Google Scholar 

  164. Weil J, Eschenhagen T, Fleige G, Mittmann C, Orthey E, Scholz H. 1998. Localization of preproenkephalin mRNA in rat heart: selective gene expression in left ventricular myocardium. Am J Physiol 275:378–384.

    Google Scholar 

  165. Paterson SJ, Robson LE, Kosterlitz HW. 1983. Classification of opioid receptors. Br Med Bull 39: 31–36.

    PubMed  CAS  Google Scholar 

  166. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M. 1996. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48: 567–592.

    PubMed  CAS  Google Scholar 

  167. Ventura C, Spurgeon H, Lakatta EG, Guarnieri C, Capogrossi MC. 1992. Kappa and delta opioid receptor stimulation affects cardiac myocyte function and Ca2+ release from an intracellular pool in myocytes and neurons. Circ Res 70:66–81.

    Article  PubMed  CAS  Google Scholar 

  168. Wittert G, Hope P, Pyle D. 1996. Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun 218:877–881.

    Article  PubMed  CAS  Google Scholar 

  169. Takasaki Y, Wolff RA, Chien GL, van Winkle DM. 1999. Met5-enkephalin protects isolated adult rabbit cardiomyocytes via delta-opioid receptors. Am J Physiol 277:2442–2450.

    Google Scholar 

  170. Ventura C, Maioli M, Pintus G, Posadino AM, Tadolini B. 1998. Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei. J Biol Chem 273:13383–13386.

    Article  PubMed  CAS  Google Scholar 

  171. Fryer RM, Hsu AK, Eells JT, Nagase H, Gross GJ. 1999. Opioid-induced second window of cardioprotection: potential role of mitochondrial KATP channels. Circ Res 84:846–851.

    Article  PubMed  CAS  Google Scholar 

  172. Boiling SF, Su TP, Childs KF, Ning XH, Horton N, Kilgore K, Oeltgen PR. 1997. The use of hibernation induction triggers for cardiac transplant preservation. Transplantation 63:326–329.

    Article  Google Scholar 

  173. Hjalmarson A. 1994. Empiric therapy with beta-blockers. Pacing Clin Electrophysiol 17:460–466.

    Article  PubMed  CAS  Google Scholar 

  174. Feuerstein GZ, Ruffolo RR Jr. 1996. Carvedilol, a novel vasodilating beta-blocker with the potential for cardiovascular organ protection. Eur Heart J 17 Suppl B:24–29.

    Google Scholar 

  175. Hamburger SA, Barone FC, Feuerstein GZ, Ruffolo RR Jr. 1991. Carvedilol (Kredex) reduces infarct size in a canine model of acute myocardial infarction. Pharmacology 43:113–120.

    Article  PubMed  CAS  Google Scholar 

  176. Bril A, Slivjak M, DiMartino MJ, Feuerstein GZ, Linee P, Poyser RH, Ruffolo RR Jr, Smith EF 3rd. 1992. Cardioprotective effects of carvedilol, a novel beta adrenoceptor antagonist with vasodilating properties, in anaesthetised minipigs: comparison with propranolol. Cardiovasc Res 26: 518–525.

    Article  PubMed  CAS  Google Scholar 

  177. Brunvand H, Kvitting PM, Rynning SE, Berge RK, Grong K. 1996. Carvedilol protects against lethal reperfusion injury through antiadrenergic mechanisms. J Cardiovasc Pharmacol 28:409–417.

    Article  PubMed  CAS  Google Scholar 

  178. Ruffolo RR Jr, Feuerstein GZ. 1997. Pharmacology of carvedilol: rationale for use in hypertension, coronary artery disease, and congestive heart failure. Cardiovasc Drugs Ther 11 Supp:247–256.

    Google Scholar 

  179. Sorescu D, Griendling KK. 2002. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140.

    Article  PubMed  CAS  Google Scholar 

  180. Shimizu M, Wang QD, Sjoquist PO, Ryden L. 1998. Angiotensin II type 1 receptor blockade with candesartan protects the porcine myocardium from reperfusion-induced injury. J Cardiovasc Pharmacol 32:231–238.

    Article  PubMed  CAS  Google Scholar 

  181. Smith WH, Ball SC. 2000. ACE inhibitors in heart failure: an update. Basic Res Cardiol 95 Suppl 1:18–14.

    Google Scholar 

  182. Pfeffer MA. 2000. Enhancing cardiac protection after myocardial infarction: rationale for newer clinical trials of angiotensin receptor blockers. Am Heart J 139:23–28.

    Article  Google Scholar 

  183. Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K, et al. 1994. Cardioprotective effects of the angiotensin II type I receptor antagonist TCV-116 on ischemia-repertusion injury. Am Heart J 23:919–923.

    Google Scholar 

  184. Lazar HL, Bao Y, Rivers S, Bernard SA. 2002. Pretreatment with angiotensin-converting enzyme inhibitors attenuates ischemia-repertusion injury. Ann Thorac Surg 73:1522–1527.

    Article  PubMed  Google Scholar 

  185. Liu YH, Yang XR, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. 1997. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935.

    Article  PubMed  CAS  Google Scholar 

  186. Jalowy A, Schulz R, Dorge H, Behrends M, Heusch G. 1998. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32:1787–1796.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, R.B., Dhalla, N.S. (2004). Mechanisms of Cardioprotection against Ischemia Reperfusion Injury. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics