Skip to main content

Calcium Signalling During Acute Myocardial Ischemia: New Insights From Optical Mapping Techniques

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 299 Accesses

Summary

Acute myocardial ischemia leads to an increase in the systolic and diastolic levels of the intracellular calcium transient during the first few minutes. This overall increase is associated with beat-to-beat fluctations in the peak and trough levels of the transients—calcium transient alternans. New advances in fluorescence imaging techniques have allowed the spatial distribution of calcium transient alternans to be studied during ischemia, and to be correlated with similar imaging of the cardiac action potential. These studies provide further evidence that alternans phenomena are responsible for the genesis of ventricular fibrillation during acute ischemia, and suggest specific molecular mechanisms that could be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Boise R, Sorrentino V, Daniele G. 2001. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200.

    Article  PubMed  CAS  Google Scholar 

  2. Laitinen PJ, Brown KM, Pippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marimo M, Tiso N,Viitasalo M,Toivonen L, Stephan DA, Kontula K. 2001. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103:485–490.

    Article  PubMed  CAS  Google Scholar 

  3. Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A. 2001. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2) Hum Mol Genet 10:189–194.

    Article  PubMed  CAS  Google Scholar 

  4. Kaumann AJ, Aramendia P. 1968. Prevention of ventricular fibrillation induced by coronary ligation. J Pharm Exp Ther 164:326–332.

    CAS  Google Scholar 

  5. Clusin WT, Bristow MR, Bairn DS, Schroeder JS, Jaillon P, Brett P, Harrison DC. 1982. The effects of diltiazem and reduced serum ionized calcium on ischemic ventricular fibrillation in the dog. Circ Res 50:518–526.

    Article  PubMed  CAS  Google Scholar 

  6. Thandroyen FT, McCarthy J, Burton KP, Opie LH. 1988. Ryanodine and caffeine prevent ventricular arrhythmias during acute myocardial ischemia and reperfusion in rat heart. Circ Res 62:306–314

    Article  PubMed  CAS  Google Scholar 

  7. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. 1999. Mechanism Unking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385–1394.

    Article  PubMed  CAS  Google Scholar 

  8. Kihara Y, Morgan JP. 1991. Abnormal calcium handling is the primary cause of mechanical alternans: Study in ferret ventricular muscles. Am J Physiol 261:H1746–H1755.

    PubMed  CAS  Google Scholar 

  9. Downar E, Janse MJ, Durrer D. 1977. The effects of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 56:217–224.

    Article  PubMed  CAS  Google Scholar 

  10. Carson DL, Cardinal R, Savard P, Vermeulen M. 1986. Characterization of unipolar waveform alternation in acutely ischaemic porcine myocardium. Cardiovascular Res 20:521–527.

    Article  CAS  Google Scholar 

  11. Konta T, Ikeda K, Yamaki M, Nakamura K, Honma K, Kubota I, Yasui S. 1990. Significance of discordant ST alternans in ventricular fibrillation. Circulation 78:1047–1059.

    Google Scholar 

  12. Watanabe MA, Fenton FH, Evans SJ, Hastings HM, Karma A. 2001. Mechanism of discordant alternans. J Cardiovasc Electrophys 12:196–209.

    Article  CAS  Google Scholar 

  13. Qu Z, Garfinkel A, Chen P-S, Weiss JN. 2000. Mechanisms of discordant alternans and induction of re-entry in simulated cardiac tissue. Circulation 102:1664–1670.

    Article  PubMed  CAS  Google Scholar 

  14. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT. 1988. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo-1. Correlation with monophasic action potentials and contraction. Circulation 78:1047–1059.

    Article  PubMed  CAS  Google Scholar 

  15. Kurz RW, Mohabir R, Ren XL, Franz MR. 1993. Ischaemia induced alternans of action potential duration in the intact heart: Dependence on coronary flow, preload and cycle length. Eur Heart J 14:1410–1420.

    Article  PubMed  CAS  Google Scholar 

  16. Euler DE. 1999. Cardiac alternans: mechanisms and pathophysiological significance. Cardiovasc Res 42:583–590.

    Article  PubMed  CAS  Google Scholar 

  17. Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B. 1999. Intracellular Ca++ dynamics and stability of ventricular tachycardia. Biophys J 77:2930–2941.

    Article  PubMed  CAS  Google Scholar 

  18. Orchard CH, McCall E, Kirby MS, Boyett MR. 1991. Mechanical alternans during acidosis in ferret ventricular muscle. Circ Res 68:69–76.

    Article  PubMed  CAS  Google Scholar 

  19. Morad M, Trautwein W. 1968. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pfluger’s Archiv 299:66–82.

    Article  CAS  Google Scholar 

  20. Saitoh H, Bailey JC, Surawicz B. 1989. Action potential duration alternans in dog Purkinje and ventricjular muscle fibers. Further evidence in support of two different mechanisms. Circulation 80:1421–1431.

    Article  PubMed  CAS  Google Scholar 

  21. Hashimoto H, Suzuki K, Miyake S, Nakashima M. 1983. Effects of calcium antagonists on the electrical alternans of the ST segment and on associated mechanical alternans during acute coronary occlusion in dogs. Circulation 68:667–672.

    Article  PubMed  CAS  Google Scholar 

  22. Lee HC, Smith N, Mohabir R, Clusin WT. 1987. Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci 84:7793–7797.

    Article  PubMed  CAS  Google Scholar 

  23. Mohabir R, Lee HC, Kurz RW, Clusin WT. 1991. Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction and pH in perfused rabbit hearts. Circ Res 69:1525–1537.

    Article  PubMed  CAS  Google Scholar 

  24. Kihara Y, Grossman W, Morgan JP. 1989. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia and reperfusion of the intact mammalian heart. Circ Res 65:1029–1044.

    Article  PubMed  CAS  Google Scholar 

  25. Figueredo VM, Brandes R, Weiner MW, Massie BM, Camacho SA. 1993. Endocardial versus epicardial differences of intracellular free calcium under normal and ischemic conditions. Circ Res 72:1082–1090.

    Article  PubMed  CAS  Google Scholar 

  26. Wu YM, Clusin WT. 1997. Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator Fura Red Am J Physiol 273:H2161–H2169.

    PubMed  CAS  Google Scholar 

  27. Chien WW, Mohabir R, Clusin WT. 1990. Effect of thrombin on calcium homeostasis in chick embryonic heart cells: Receptor operated calcium entry with IP3 and a pertussin toxin-sensitive G protein as second messengers. J Clin Invest 86:1436–1443.

    Article  Google Scholar 

  28. Chien WW, Mohabir R, Newman D, Leung LLK, Clusin WT. 1990. Effect of platelet release products on cytosolic calcium in cardiac myocytes. Biochem Biophys Res Com 170:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  29. Qian YW, Clusin WT, Lin SF, Han J, Sung RJ. 2001. Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood perfused rabbit heart. Circ 104:2082–2087.

    Article  CAS  Google Scholar 

  30. Miura M, Boyden PA, Ter Keurs HEDJ. 1998. [Ca2+]i waves during triggered propagated contractions in intact trabeculae. Am J Physiol 274:H266–H276.

    PubMed  Google Scholar 

  31. Lamont C, Luther PW, Balke CW, Wier WG. 1998. Intercellular Ca2+ waves in rat heart muscle. J Physiol 512:669–676.

    Article  PubMed  CAS  Google Scholar 

  32. Janse MJ, Kleber AF, Downar E, Durrer D. 1977. Changements electrophysiologiques pendant l’ischemie myocardique et mechanisme possible des troubles du rhythme ventriculaire. Ann Cardiol Angeiol 26 (suppl)551–554.

    Google Scholar 

  33. Clusin WT, Han J, Qian Y-W 1999. Simultaneous recordings of calcium transients and action potentials from small regions of the perfused rabbit heart. Pace 22:834a.

    Google Scholar 

  34. Choi BR, Salama G. 2000. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol 529:171–188.

    Article  PubMed  CAS  Google Scholar 

  35. Qian Y-W, Lin S-F, Sung RJ, Clusin WT. 2001 Spatial heterogeneity of action potential alternans in blood perfused ischemic rabbit hearts. Biophys J 80:643a.

    Article  Google Scholar 

  36. Clusin WT, Vriens P, Qian Y-W. 1998. Cytosolic calcium transients from in vivo porcine hearts. J Investigative Med 46:193a.

    Google Scholar 

  37. Clusin WT. 2000. The role of cytosolic calcium in electrical and mechanical alternans during ischemia. In: Monophasic Action Potentials: Bridging Cell and Bedside. Ed. M.R. Franz, 209–225. Armonk, NY. Futura Press.

    Google Scholar 

  38. Isenberg G. 1975. Is potassium conductance of cardiac Purkinje fibers controlled by [Ca2+]i,? Nature 253:273–274.

    Article  CAS  Google Scholar 

  39. Zygmunt AC, Gibbons WR. 1991. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68:424–437.

    Article  PubMed  CAS  Google Scholar 

  40. Zygmunt AC. 1994. Intracellular calcium activates a chloride current in canine ventricular myocytes. Am J Physiol 267:H1984–H1995.

    PubMed  CAS  Google Scholar 

  41. Eu JP, Sun J, Xu L, Stamler JS, Meissner G. 2000. The skeletal muscle calcium release channel: Coupled O2 sensor and NO signaling functions. Cell 102:499–509.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clusin, W.T. (2004). Calcium Signalling During Acute Myocardial Ischemia: New Insights From Optical Mapping Techniques. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics