Skip to main content

Measurement of Cytosolic pH Simultaneouly with Isometric Tension in Canine Trabeculae

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

Summary

Dye leakage is a major problem for experiments used to measure cytosolic pH that last over several hours. The ratio of epifluorescence (FI500/FI440, 540 nm emission) of the pH indicator 2′,7′-bis(carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) changes with time when it is loaded in the tissue. This change is enhanced by experimental protocols with large changes in pH and is probably due to dye leakage from the cells. Measurements of cytosolic pH (pHi) which are performed long before the calibrations, are hence rendered unreliable. We describe a calibration technique for measuring pHi during long experimental protocols performed on canine right ventricular trabeculae loaded with BCECF. The equation was modified to calculate pHi according to the intracellular concentration of dye present during each measurement. This concentration-based correction compensates for dye leakage during long experiments. Fluorescence was measured simultaneously with isometric twitch tension. With this technique we show that prolonged acidification (45 minutes) in the presence or absence of bicarbonate in the buffer medium did not produce significant irreversible damage to the ventricular trabeculae as judged by developed isometric contractile tension, which was measured simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fabiato A, Fabiato F. 1978. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276:233–255.

    PubMed  CAS  Google Scholar 

  2. Moody W, Hagiwara S. 1982. Block of inward rectification by intracellular H+ in immature oocytes of the starfish Mediaster aequalis. J Gen Physiol 79:115–130.

    Article  PubMed  CAS  Google Scholar 

  3. Roos A, Boron WF. 1981. Intracellular pH. Physiol Rev 61:296–435.

    PubMed  CAS  Google Scholar 

  4. Bountra C, Vaughan-Jones RD. 1989. Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J Physiol 418:163–187.

    PubMed  CAS  Google Scholar 

  5. Bright CM, Ellis D. 1992. Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibers. Exp Physiol 77:165–175.

    PubMed  CAS  Google Scholar 

  6. Kohmoto O, Spitzer KW, Movsesian MA, Barry WH. 1990. Effects of intracellular acidosis on [Ca2+], transients, transsarcolemmal Ca2+ fluxes, and contraction in ventricular myocytes. Circ Res 66:622–632.

    Article  PubMed  CAS  Google Scholar 

  7. Mohabir R, Lee H-C, Kurz RW, Clusin WT. 1991. Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction, and pHi in perfused rabbit hearts. Circ Res 69: 1525–1537.

    Article  PubMed  CAS  Google Scholar 

  8. Borzak S, Kelly RA, Kramer BK, Matoba Y, Marsh JD, Reers M. 1990. In situ calibration of fura-2 and BCECF fluorescence in adult rat ventricular myocytes. Am J Physiol 259:H973–H981.

    PubMed  CAS  Google Scholar 

  9. Bright GR, Fisher GW, Rogowska J, Taylor DL. 1984. Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol 98:717–724.

    Article  Google Scholar 

  10. Aalkjaer C, Cragoe EJ. 1988. Intracellular pH regulation in resting and contracting segments of rat mesenteric resistance vessels. J Physiol 402:391–410.

    PubMed  CAS  Google Scholar 

  11. Putnam RW, Grubbs RD 1990. Steady-state pHi buffering power, and effect of C02 in a smooth muscle-like cell line. Am J Physiol 258:C461–C469.

    PubMed  CAS  Google Scholar 

  12. Yu J, Zheng JJ, Ong BY, Bose R. 1991. Intracellular pH measurement with fluorescent dye in canine basilar arteries. Blood Vessels 28:464–474.

    PubMed  CAS  Google Scholar 

  13. Gérard C, Boudier JA, Mauchamp J, Verrier B. 1990. Evidence for probenecid-sensitive organic anion transporters on polarized thyroid cells in culture. J Cell Physiol 144:354–364.

    Article  PubMed  Google Scholar 

  14. Allen DG, Orchard CH. 1987. Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168.

    Article  PubMed  CAS  Google Scholar 

  15. Carter G, Gavin JB. 1989. Endocardial damage induced by lactate, lowered pH and lactic acid in non-ischemic beating hearts. Pathol 21:125–130.

    Article  CAS  Google Scholar 

  16. Cobbe SM, Poole-Wilson PA. 1980. The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol 12:745–760.

    Article  PubMed  CAS  Google Scholar 

  17. Lazdunski M, Frelin C, Vigne P. 1985. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042.

    Article  PubMed  CAS  Google Scholar 

  18. Eisner DA, Nichols CG, O’Neill SC, Smith GL, Valdeolmillos M. 1989. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol 411:393–418.

    PubMed  CAS  Google Scholar 

  19. James-Kracke MR. 1992. Quick and accurate method to convert BCECF fluorescence to pHi: calibration in three different types of cell preparations. J Cell Physiol 151:596–603.

    Article  PubMed  CAS  Google Scholar 

  20. Rink TJ, Tsien RY, Pozzan T. 1982. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196.

    Article  PubMed  CAS  Google Scholar 

  21. Thomas JA, Buchsbaum RN, Zimniak A, Racker E. 1979. Intracellular pH measurements in Ehrlich Ascites tumor cells using spectroscopic probes generated in situ. Biochemistry 18:2210–2218.

    Article  PubMed  CAS  Google Scholar 

  22. Reers M, Kelly RA, Smith TW. 1989. Calcium and proton activities in rat cardiac mitochondria: effect of matrix environment on behavior of fluorescent probes. Biochem J 257:131–142.

    PubMed  CAS  Google Scholar 

  23. Noël J, Tejedor A, Vinay P, Laprade R. 1989. Fluorescence measurement of intracellular pH on proximal tubule suspensions, the need for a BCECF sink. Renal Physiol Biochem 12:371–387.

    PubMed  Google Scholar 

  24. Orchard CH, Kentish JO 1990. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 258:C967–C981.

    PubMed  CAS  Google Scholar 

  25. Rousseau E, Pinkos J. 1990. pH modulates conducting and gating behavior of single calcium release channels. Pflügers Arch 415:645–647.

    Article  PubMed  CAS  Google Scholar 

  26. Harvey RD, Ten Eick RE. 1989. On the role of sodium ions in the regulation of the inward rectifying potassium conductance in cat ventricular myocytes. J Gen Physiol 94:329–348.

    Article  PubMed  CAS  Google Scholar 

  27. Irisawa H, Sato R. 1986. Intra– and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res 59:348–355.

    Article  PubMed  CAS  Google Scholar 

  28. Hoxworth JM, Xu K, Zhou Y, Lust WD, LaManna JC. 1999. Cerebral metabolic profile, selective neuron loss and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation. Brain Res 821:467–479.

    Article  PubMed  CAS  Google Scholar 

  29. Kaila K, Vaughan-Jones RD, Bountra C. 1987. Regulation of intracellular pH in sheep cardiac Purkinje fiber: interactions among Na+, H+, and Ca2+. Can J Physiol Pharmacol 65:963–969.

    Article  PubMed  CAS  Google Scholar 

  30. Balnave CD, Vaughan-Jones RD. 2000. Effect of intracellular pH on spontaneous Ca2+ sparks in ventricular myocytes. J Physiol 528:125–137.

    Article  Google Scholar 

  31. MacLeod KT, Harding SE. 1991. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J Physiol 444:481–498.

    PubMed  CAS  Google Scholar 

  32. Vaughan-Jones RD, Eisner DA, Lederer WJ. 1987. Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers. J Gen Physiol 89:1015–1032.

    Article  PubMed  CAS  Google Scholar 

  33. Karmazyn M. 1988. Amiloride enhances postischemic ventricular recovery: possible role of Na+-H+ exchange. Am J Physiol 255:H608–H615.

    PubMed  CAS  Google Scholar 

  34. Meng, H-P, Pierce GN. 1990. Protective effects of 5-(N,N-dimethyl)amiloride on ischemia-reperfusion injury in hearts. Am J Physiol 258:H1615–H1619.

    PubMed  CAS  Google Scholar 

  35. Bielen FV, Bosteels S, Verdonck F. 1990. Consequences of CO2 acidosis for transmembrane Na+ transport and membrane current in rabbit cardiac Purkinje fibers. J Physiol 427:325–345.

    PubMed  CAS  Google Scholar 

  36. Kaila K, Vaughan-Jones RD. 1987. Influence of sodium-hydrogen exchange on intracellular pH, sodium and tension in sheep cardiac Purkinje fibers. J Physiol 390:93–118.

    PubMed  CAS  Google Scholar 

  37. Hayashi H, Miyata H, Noda N, Kobayashi A, Hirano M, Kawai T, Yamazaki N. 1992. Intracellular Ca2+ concentration and pHi during metabolic inhibition. Am J Physiol 262:C628–C634.

    PubMed  CAS  Google Scholar 

  38. Vaughan-Jones RD, Wu M-L. 1990. Extracellular H+ inactivation of Na+-H+ exchange in the sheep cardiac Purkinje fiber. J Physiol 428:441–466.

    PubMed  CAS  Google Scholar 

  39. Imai S, Shi A-Y, Ishibashi T, Nakazawa M. 1991. Na+/H+ exchange is not operative under low-flow ischemic conditions. J Mol Cell Cardiol 23:505–517.

    Article  PubMed  CAS  Google Scholar 

  40. Greene HL, Weisfeldt ML. 1977. Determinants of hypoxic and posthypoxic contracture. Am J Physiol 232:H526–H533.

    PubMed  CAS  Google Scholar 

  41. Harrison SM, Lancaster MK. 1994. The effects of NiCl on intracellular Ca2+, Na+, and H+, during metabolic inhibition in rat ventricular cells. Biophys J 66:A95.

    Google Scholar 

  42. McCord JM. 1985. Oxygen-derived free radicals in postischemic tissue injury. N Eng J Med 312:159–163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guia, A., Bose, R. (2004). Measurement of Cytosolic pH Simultaneouly with Isometric Tension in Canine Trabeculae. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics