Skip to main content

Differential Inhibition by the Phosphatase Inhibitor Cantharidin of the Anti-adrenergic Effect of Endothelin-1 and Carbachol in the Canine Ventricular Myocardium

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 299 Accesses

Summary

Endothelin-1 (ET-1) and the muscarinic agonist carbachol do not affect the basal force of contraction, but induce a pronounced negative inotropic effect in the presence of β-adrenoceptor stimulation in the canine ventricular myocardium. We studied the influence of the phosphatase inhibitor cantharidin on the negative inotropic effect of ET-1 and carbachol in isolated canine right ventricular trabeculae and single ventricular myocytes. In the presence of 100 nM norepinephrine (NE), 10nM ET-1 and 30 nM carbachol induced a negative inotropic effect of an identical extent. Cantharidin at 10 μM did not affect the basal force of contraction and the positive inotropic effect of NE mediated by β-adrenoceptor stimulation. Cantharidin (10 μM) markedly attenuated the negative inotropic effect of ET-1, but it did not affect the negative inotropic effect of carbachol. At 30 μM, cantharidin induced a positive inotropic effect and enhanced the positive inotropic effect of NE. Cantharidin (30 μM) suppressed significantly the negative inotropic effect of carbachol (30 nM and 100 nM). In canine single ventricular myocytes, ET-1 (10nM) or carbachol (30nM) did not affect the baseline level of cell shortening and the amplitude of intracellular Ca2+ transients, while they inhibited the NE (30 μM)-induced increases in cell shortening and Ca2+ transients. Cantharidin (10 μM) attenuated the inhibitory action of ET-1, but did not affect the effects of carbachol in the presence of NE. These results indicate that the activation of phosphatase that is susceptible to cantharidin is involved in the negative inotropic effect of both ET-1 and carbachol. The extent of contribution of phosphatase activation appears to be greater in the ET-1-induced negative inotropic effect than in the effect of the muscarinic receptor agonist carbachol in the canine ventricular myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endoh M. 1999. Muscarinic regulation of Ca2+ signaling in mammalian atrial and ventricular myocardium. Eur J Pharmacol 375:177–196.

    Article  PubMed  CAS  Google Scholar 

  2. Endoh M. 1979. Correlation of cyclic AMP and cyclic GMP levels with changes in contractile force of dog ventricular myocardium during cholinergic antagonism of positive inotropic actions of histamine, glucagon, theophyline and papaverine. Jpn J Pharmacol 29:855–864.

    Article  PubMed  CAS  Google Scholar 

  3. Endoh M, Honma M. 1979. Effects of papaverine and its interaction with isoprenaline and carbachol on the contractile force and cyclic nucleotide levels of the canine ventricular myocardium. Naunyn-Schmiedeberg’s Arch Pharmacol 306:241–248.

    Article  CAS  Google Scholar 

  4. Gupta RC, Neumann J, Boknik P, et al. 1994. M2-specific muscarinic cholinergic receptor-mediated inhibition of cardiac regulatory protein phosphorylation. Am J Physiol 266:H1138–H1144.

    PubMed  CAS  Google Scholar 

  5. Ahmad Z, Green F, Subuhi HS, Watanabe AM. 1989. Autonomic regulation of type 1 protein phosphatase in cardiac muscle. J Biol Chem 264:3859–3863.

    PubMed  CAS  Google Scholar 

  6. Gupta RC, Neumann J, Watanabe AM. 1993. Comparison of adenosine and muscarinic receptor-mediated effects on protein phosphatase inhibitor-1 activity in the heart. J Pharmacol Exp Ther 266:16–22.

    PubMed  CAS  Google Scholar 

  7. Sakai R, Shen JB, Pappano AJ. 1999. Elevated cAMP suppresses muscarinic inhibition of L-type calcium current in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 34:304–315.

    Article  PubMed  CAS  Google Scholar 

  8. Herzig S, Meier A, Pfeiffer M, Neumann J. 1995. Stimulation of protein phosphatases as a mechanism of the muscarinic-receptor-mediated inhibition of the cardiac L-type Ca2+ channels. Pflügers Arch 429:531–538.

    Article  PubMed  CAS  Google Scholar 

  9. Narayan P, Mentzer RM Jr, Lasley RD. 2000. Phosphatase inhibitor cantharidin blocks adenosine A1 receptor anti-adrenergic effect in rat cardiac myocytes. Am J Physiol 278:H1–H7.

    CAS  Google Scholar 

  10. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415.

    Article  PubMed  CAS  Google Scholar 

  11. Takanashi M, Endoh M. 1991. Characterization of the positive inotropic effect of endothelin on mammalian ventricular myocardium. Am J Physiol 261:H611–H619.

    PubMed  CAS  Google Scholar 

  12. Moravec CS, Reynolds EE, Stewart RW, Bond M. 1989. Endothelin is a positive inotropic agent in human and rat heart in vitro. Biochem Biophys Res Commun 159:14–18.

    Article  PubMed  CAS  Google Scholar 

  13. Izumi M, Miyamoto S, Hori M, Ozaki H, Karaki H. 2000. Negative inotropic effect of endothe-lin-1 in the mouse right ventricle. Eur J Pharmacol 393:109–117.

    Article  Google Scholar 

  14. Kohmoto O, Ikenouchi H, Hirata Y, Momomura S, Serizawa T, Barry WH. 1993. Variable effects of endothelin-1 on [Ca2+]1 transients, pH1 and contraction in ventricular myocytes. Am J Physiol 265:H793–H800.

    PubMed  CAS  Google Scholar 

  15. Hilal-Dandan R, Urasawa K, Brunton LL. 1992. Endothelin inhibits adenylate cyclase and stimulates phosphoinositide hydrolysis in adult cardiac myocytes. J Biol Chem 267:10620–10624.

    PubMed  CAS  Google Scholar 

  16. Hilal-Dandan R, Merck D, Lujan J, Brunton LL. 1994. Coupling of the type A endothelin receptor to multiple responses in adult rat myocytes. Mol Pharmacol 45:1183–1190.

    PubMed  CAS  Google Scholar 

  17. Banyasz T, Magyar J, Kortvely A, Szigeti G, Szigligeti P, Papp Z, Mohaesi A, Kovacs L, Nanasi PP. 2001. Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells. Naunyn-Schmiedeberg’s Arch Pharmacol 363:383–390.

    Article  CAS  Google Scholar 

  18. Zhu Y, Yang HT, Endoh M. 1997. Does nitric oxide contribute to the negative chronotropic and inotropic effects of endothelin-1 in the heart? Eur J Pharmacol 332:195–199.

    Article  PubMed  CAS  Google Scholar 

  19. Zhu Y, Yang HT, Endoh M. 1997. Negative chronotropic and inotropic effects of endothelin isopeptides in mammalian cardiac muscle. Am J Physiol 273:H119–H127.

    PubMed  CAS  Google Scholar 

  20. Chu L, Endoh M. 2000. Biphasic inotropic effects of endothelin-1 in the presence of sympathomimetic drugs at different concentrations in canine ventricular myocardium (abstract). Jpn J Pharmacol 82 (suppl I):198P.

    Google Scholar 

  21. Chu L, Endoh M. 2000. Biphasic inotropic response to endothelin-1 in the presence of various concentrations of norepinephrine in dog ventricular myocardium. J Cardiovasc Pharmacol 36 (Suppl. 2):S9–S14.

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe T, Endoh M. 2000. Antiadrenergic effects of endothelin-1 on L-type Ca2+ current in canine ventricular myocytes. J Cardiovasc Pharmacol 36:344–350.

    Article  PubMed  CAS  Google Scholar 

  23. Walker CA, Ergul A, Zile MR, et al. 2001. β-Adrenergic and endothelin receptor interaction in dilated human cardiomyopathic myocardium. J Cardiac Fail 7:129–137.

    Article  CAS  Google Scholar 

  24. Watanabe T, Endoh M. 1999. Characterization of the endothelin-1 induced regulation of L-type Ca2+ current in rabbit ventricular myocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 360:654–664.

    Article  CAS  Google Scholar 

  25. Reid JJ, Lieu AT, Rand MJ. 1991. Interactions between endothelin-1 and other chronotropic agents in rat isolated atria. Eur J Pharmacol 194:173–181.

    Article  PubMed  CAS  Google Scholar 

  26. Yang HT, Sakurai K, Sugawara H, Watanabe T, Norota I, Endoh M. 1999. Role of Na+/Ca2+ exchange in endothelin-1-induced increases in Ca2+ transient and contractility in rabbit ventricular myocytes: pharmacological analysis with KB-R7943. Br J Pharmacol 126:1785–1795.

    Article  PubMed  CAS  Google Scholar 

  27. Neumann J, Herzig S, Boknik P, Apel M, Kaspareit G, Schmitz W, Scholz H, Tepel M, Zimmermann N. 1995. On the cardiac contractile, biochemical and electrophysiological effects of cantharidin, a phosphatase inhibitor. J Pharmacol Exp Ther 274:530–539.

    PubMed  CAS  Google Scholar 

  28. Sulakhe PV, Vo XT. 1995. Regulation of phospholamban and troponin-I phosphorylation in the intact rat cardiomyocytes by adrenergic and cholinergic stimuli: roles of cyclic nucleotides, calcium, protein kinases and phosphatases and depolarization. Mol Cell Biochem 149–150:103–126.

    Google Scholar 

  29. Boknik P, Khorchidi S, Bodor GS, Huke S, Knapp J, Linck B, Luss A, Muller FU, Schnitz W, Neumann J. 2001. Role of protein phosphatases in regulation of cardiac inotropy and relaxation. Am J Physiol 280:H786–H794.

    CAS  Google Scholar 

  30. Endoh M, Chu L, Takahashi R, Norata I. 2001. Regulation of cardiac Ca2+ signaling by cross talk of endothelin-1 and norepinephrine (abstract). Jpn J Pharmacol. 85 (suppl I):20p.

    Google Scholar 

  31. Gupta RC, Neumann J, Durant P, Watanabe AM. 1993. A1-adenosine receptor-mediated inhibition of isoproterenol-stimulated protein phosphorylation in ventricular myocytes. Evidence against a cAMP-dependent effect. Circ Res 72:65–74.

    Article  PubMed  CAS  Google Scholar 

  32. Levi RC, Alloati G, Penna C, Gallo MP. 1994. Guanylate-cyclase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflügers Arch 426:419–426.

    Article  PubMed  CAS  Google Scholar 

  33. Sawmiller DR, Fenton RA, Dobson JG Jr. 1998. Myocardial adenosine A1-receptor sensitivity during juvenile and adult stages of maturation. Am J Physiol 274:H627–H635.

    PubMed  CAS  Google Scholar 

  34. Zhang JZ, Macleod KM. 1996. Dissociation of negative inotropic effect of carbachol from changes in cAMP and PKA in perfused rat hearts. Am J Physiol 271:H404–H409.

    PubMed  CAS  Google Scholar 

  35. Blinks JR, Endoh M. 1986. Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73 (suppl III):III–85–III–98.

    Google Scholar 

  36. Chu L and Endoh M. 2001. Differential inotropic effects of endothelin-1, angiotensin II and phenylephrine via α-adrenoceptor stimulation in dog ventricular myocardium (abstract). Folia Pharmacol Jpn 117:11P.

    Google Scholar 

  37. Delpech N, Soustre H, Putreau D. 1997. Endothelin-1 inhibits L-type Ca2+ current enhanced by isoprenaline in rat atrial myocytes. J Cardiovasc Pharmacol 29:136–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Endoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Endoh, M., Chu, L., Norota, I., Ishii, K. (2004). Differential Inhibition by the Phosphatase Inhibitor Cantharidin of the Anti-adrenergic Effect of Endothelin-1 and Carbachol in the Canine Ventricular Myocardium. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics