Skip to main content

Do Humoral and Mechanical Stimulation of Cardiomyocytes Share Common Transduction Pathways?

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 301 Accesses

Summary

Physical forces are the most basic and non-specific forces to which living organisms were exposed during evolution, whereas humoral effectors developed in more complex organisms. We tested the hypothesis that both adrenergic (humoral) and hypergravity (mechanical) stimulation may share common signal transduction pathways. Mechanical loading remains the most critical effector in the development of cardiac hypertrophy, while hypergravity is currently used to train aircraft and space crews and may lead to aberrations in cardiac function. In this study, we used cultured cardiomyoctes submitted to 10 min hypergravity or to adrenostimulation. Specific inhibitors of adrenoreceptors and of protein kinases were used to identify cell reactivity. The mRNA of c-fos and creatine kinase isoenzymes was determined by Northern blot. We showed that with respect to c-fos induction, although both effectors are initiated at different transduction levels, apparently share a common transduction pathway—Protein kinase C—but in reality they are transduced via different isoenzymes of the PKC complex. Creatine kinase is expressed through two independent pathways. We suggest that studying the opposite effects of hypo- and hypergravity could add new insights into how cells sense mechanical stimulation that might lead to identification of the cellular messengers participating in the mechanosensitive pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan HE, Baker KM. 1991. Cardiac hypertrophy: Mechanical, neural and endocrine dependence. Circulation 83:13–25.

    Article  PubMed  CAS  Google Scholar 

  2. Simpson P, McGrath A, Savion Sh. 1982. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and catecholamines. Circ Res 51:787–801.

    Article  PubMed  CAS  Google Scholar 

  3. Long CS, Kariya K, Simpson PC. 1990. Trophic factors for cardiac myocytes. J Hypertensios 8: S219–S224.

    CAS  Google Scholar 

  4. Rupp H, Berger HJ, Pfeiffer A, Werdan K. 1991. Effect of positive ionotropic agents on myosin isozyme population and mechanical activity of cultured rat heart myocytes. Circ Res 68:1164–1173.

    Article  PubMed  CAS  Google Scholar 

  5. Hannan RD, Lukyen J, Rothblum LI. 1995. Regulation of rDNA transcription factors during cardiomyocyte hypertrophy induced by adrenergic agents. J Biol Chem 270:8290–8297.

    Article  PubMed  CAS  Google Scholar 

  6. Pinson A, Schluter KD, Zhou XJ, Schwartz P, Kessler-Icekson G, Piper HM. 1993. Regulation of protein synthesis of redifferentiated adult rat heart muscle cells by catecholamines. J Mol Cell Cardiol 25:477–490.

    Article  PubMed  CAS  Google Scholar 

  7. Peterson MB, Lesch M. 1972. Protein synthesis and amino acid transport in isolated rabbit right ventricular muscle. Circ Res 31:317–327.

    Article  PubMed  CAS  Google Scholar 

  8. Komuro I, Yazaki Y. 1993. Control of cardiac gene expression by mechanical stress. Ann Rev Physiol 55:55–75.

    Article  CAS  Google Scholar 

  9. Tran CC, Stephane J, Serrurier B, Bigard AX, Guezennec CY. 1996. G-induced myocardium functional alterations are not related to structural changes in the heart. Aviat Space Environ Med 62:1170–1173.

    Google Scholar 

  10. Yamazaki T, Komuro I, Yazaki Y. 1995. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol 27:133–140.

    Article  PubMed  CAS  Google Scholar 

  11. Seymour RS, Hargens AR, Pedley TJ. 1993. The heart works against gravity. Am J Physiol 265:R715–R720.

    PubMed  CAS  Google Scholar 

  12. McKenzie I, Gillingham KK. 1993. Incidence of cardiac dysrhythmias occurring during centrifuge training. Aviat Space Environ Med 64:687–691.

    PubMed  CAS  Google Scholar 

  13. Frey M, von Kanel-Christen R, Stalder-Navarro V, Duke PJ, Wiebel ER, Hoppeler H. 1997. Effects of long-term hypergravity on muscle heart and lung structure in mice. J Com Physiol 167: 494–501.

    CAS  Google Scholar 

  14. Kumei Y, Nakajima T, Sato A, Kamata N, Enomoto S. 1989. Reduction of G, phase duration and enhancement of c-myc gene expression in HeLa cells at hypergravity. J Cell Sci 93:221–226.

    PubMed  CAS  Google Scholar 

  15. De Groot RP, Rijken PJ, Boonst J, Verklej AJ, De Laat SW, Kruijer W. 1991. Experimental growth factor-induced expression of c-fos is influenced by altered gravity conditions. Aviat Space Environ Med 62:37–40.

    PubMed  Google Scholar 

  16. De Groot R, Rijken PJ, Den Hertog J, Boonstra J, Verklej AJ, De Laat SW, Kruijer W. 1991a. Nuclear response to protein kinase signal transduction are sensitive to gravity changes. Exptl Cell Res 97: 87–90.

    Article  Google Scholar 

  17. Nose K, Shibanuma M. 1994. Induction of early response genes by hypergravity in cultured osteoblastic cells (MC 3T3-E1). Exptl Cell Res 211:168–170.

    Article  PubMed  CAS  Google Scholar 

  18. Kumei Y, Whitson PA, Sato A, Cintron NM. 1991. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti microtubule-associated protein antibodies. Exptl Cell Res 192:492–496.

    Article  PubMed  CAS  Google Scholar 

  19. Pinson A, Padieu P, Harary I. 1987. Techniques for culturing heart cells. In Pinson A. (ed.) The Heart Cell in Culture, CRC Press Inc., Boca Raton Vol. 1, pp. 7–22.

    Google Scholar 

  20. Herbert JM, Augereau JM, Gleye J, Maffrand JP. 1990. Chelerytrine is a potent specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172:993–999.

    Article  PubMed  CAS  Google Scholar 

  21. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H. 1990. Inhibition of a forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinoline sulfonamide (H-89) of PC12D pheochromocytoma. J Biol Chem 265:5267–5272.

    PubMed  CAS  Google Scholar 

  22. Gschwendt M, Dietench S, Rennecke J, Kittstein W, Mueller H-J, Johannes F-J. 1996. Inhibition of protein kinase C by various inhibitors. Differentiation from Protein Kinase C isoenzymes. FEBS Lett 392:77–80.

    Article  PubMed  CAS  Google Scholar 

  23. Vanderburgh HH. 1992. Mechanical forces and their second cell messengers in stimulating cell growth in vitro. Am J Physiol 262:R350–R355.

    Google Scholar 

  24. Simpson PC, Kariya K, Krans LR, Long CS, Karliner JS. 1991. Adrenergic hormones and control of cardiac myocyte growth. Mol Cell Biochem 104:35–43.

    Article  PubMed  CAS  Google Scholar 

  25. Szasz G, Gruber W. 1978. CK in the serum. 4. Differences in substrate affinity among the isozymes. Clin Chem 24:245–249.

    PubMed  CAS  Google Scholar 

  26. Ingber DE. 1990. Fibronectin controls capillary endothelial cell growth by modulation of cell shape. Proc Natl Acad Sci USA 87:3579–3583.

    Article  PubMed  CAS  Google Scholar 

  27. Bustamante JO, Ruknudin, Sachs F. 1991. Stretch-activated channels I heart cells: Relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 17(Suppl. 2):S110–113.

    Article  Google Scholar 

  28. Morris CE. 1990. Mechanosensitive ion channels. J Membr Biol 113:93–107.

    Article  PubMed  CAS  Google Scholar 

  29. Gruener R, Hoeger G. 1990. Vector-free gravity disrupts synapse formation in cell culture. Am J Physiol 27:C489–C494.

    Google Scholar 

  30. Gruener R, Hoeger G. 1991. Vector-averaged gravity alters myocyte and neuron properties in cell culture. Aviat Space Environ Med 62:1159–1165.

    PubMed  CAS  Google Scholar 

  31. Ingber DE. 1997. Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pinson, A., Tirosh, R. (2004). Do Humoral and Mechanical Stimulation of Cardiomyocytes Share Common Transduction Pathways?. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics