Acid properties of pure and sulfated mixed oxides of A12O3-TiO2 and Al2O3-ZrO2 prepared by sol-gel

  • Jorge-Luis Flores Moreno
  • François Figueras


Mixed oxides of Al and Ti or Zr were prepared by sol-gel with a ratio Ti(Zr)/Al = 5 to 20 mol.%, and compared to the products of a one step technique with sulfuric acid as catalyst in the sol-gel. The insertion of Zr or Ti results in a higher surface area after calcination at 650°C. The products of one step sol-gel synthesis retain sulfur after calcination, and show a better stability of their surface. The pure mixed oxides are Lewis acids of moderate strength. Sulfation increases the number of acid sites for both Ti and Zr materials; the effect is larger for Zr/Al mixed oxides and nearly independent of the Zr (Ti) content, above 5%. The sulfated materials prepared by one step procedure show protonic acidity absent on the non sulfated materials. This suggests that the protonic acidity is linked to sulfates born by Zr cations inserted in the lattice of alumina. The Lewis acidity of these materials is consistent with their activity for isomerisation of α-pinene epoxide to campholenic aldehyde.


Acid Site Mixed Oxide Step Procedure Sulfated Zirconia Protonic Acidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arata, K., Adv. Catal. 1990, 37, 165.,CrossRefGoogle Scholar
  2. 2.
    Arata, K., Appl. Catal., A 1996, 146, 3.CrossRefGoogle Scholar
  3. 3.
    Kustov, L.M., Kazanski, V.B., Figueras F., and Tichit, D., J. Catal. 1994, 150, 143–149CrossRefGoogle Scholar
  4. 4.
    Ward, D. A., and Ko, E. I, J. Catal. 1994, 150, 18.CrossRefGoogle Scholar
  5. 5.
    Ward, D. A., and Ko, E. I, J. Catal. 1995, 157, 321.CrossRefGoogle Scholar
  6. 6.
    Signoretto, M., Pinna, F., Strukul, G., Cerrato, G., and Morterra, C., Catal. Lett. 1996, 36, 129.CrossRefGoogle Scholar
  7. 7.
    Morterra, C., Cerrato, G., Di Ciero, S., Signoretto, M., Pinna, F., and Strukul, G., J. Catal. 1997, 165, 172.CrossRefGoogle Scholar
  8. 8.
    Tichit, D., Coq, B., Armendariz, H. and Figueras, F., Catal. Lett. 1996, 38, 109.CrossRefGoogle Scholar
  9. 9.
    Tichit, D., El Alami, D., Figueras, F., J. Catal. 1996, 163, 18.CrossRefGoogle Scholar
  10. 10.
    Kanougi, T.; Atoguchi, T.; Yao, S. J. Mol. Catal. A 2002, 177, 289.CrossRefGoogle Scholar
  11. 11.
    T. Lopez, J. Navarrete, R. Gomez, O. Novaro, F. Figueras, H. Armendariz, Applied Catal.A, General, 125 (1995) 217.CrossRefGoogle Scholar
  12. 12.
    Lopez, T., Navarrete, J., Gomez, R., Figueras, F., Langmuir, 1996, 12, 4385.CrossRefGoogle Scholar
  13. 13.
    Hölderich, W. F. and Barsnick, U. in “Fine Chemicals through heterogeneous Catalysis” (R.A. Sheldon and H. van Bekkum Eds), Wiley-VCH 2001, p217.Google Scholar
  14. 14.
    Liu Z. and Davis R. J, J. Phys. Chem 1994, 98, 1253.CrossRefGoogle Scholar
  15. 15.
    Gutierrez-Alejandre, A., Gonzalez-Cruz, M., Trombetta, M., Busca, G., Ramirez, J., Micropor. Mesopor. Mat. 1998, 23, 265–275.CrossRefGoogle Scholar
  16. 16.
    Kunkeler, P. J., van der Waal, J.C., Bremmer, J., Zuurdeeg, B.J., Downing, R.S. and van Bekkum, H., Catal. Lett. 1998, 53, 135.CrossRefGoogle Scholar
  17. 17.
    Hölderich, W. F., Röseler, J., Heitmann, G., and Liebens, A. T., Catal. Today 1997, 37, 351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jorge-Luis Flores Moreno
    • 1
  • François Figueras
    • 1
  1. 1.Institut de Recherches sur la Catalyse du CNRSVilleurbanneFrance

Personalised recommendations