Effect of Yttrium on the Crystal Structure of ZrO2

  • M. L. Ojeda
  • A. Campero


The effect of Y3+ dopant concentration in the crystal ZrO2 phase is investigated. When the Y3+ concentration is increased, the properties of the ZrO2 phase are deeply affected.

The transition temperature for the transformation from the amorphous to the tetragonal phase is substantially lowered. The resulting pure tetragonal phase remains stable at temperatures as high as 800 °C. This is probably due to Y3+ substituting for Zr4+ ions at key sites in the network of ZrO2. No presence of any contaminating monoclinic phases is detected.

The resulting systems exhibit important properties which would render them rather interesting in other fields, specifically in catalysis. Concerning the electron conducting properties, it is observed that the width of the forbidden band in these materials can be controlled by the amount of Y3+ ions added as a dopant. Considering the band gap values experimentally observed, materials with interesting electrical properties in the ionic conductivity domain can be obtained.


Tetragonal Phase Phase Reflection Bronsted Acid Site ZrO2 Phase Scissor Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. D. Mercera, J. G. Vanommen, E. B. Doesburg, A. J. Burggraaf and J. R. Ross, Appl. Catal. 78 79 (1991)CrossRefGoogle Scholar
  2. 2.
    K. Onisawa, M. Fuyama K. Tamura K. Taguchi T. Nakayama and Y. A. Ono-, J. Appl. Phys. 68, 719, (1990)CrossRefGoogle Scholar
  3. 3.
    C. Bonola, P. Camagni, N. Omenetto and G. Samoggia, J. Lumin., 48–9, 797 (1991)Google Scholar
  4. 4.
    M. Swamalatha, A. F. Stewart, A. H. Guenther and C. K. Carniglia, Appl. Phys. A 54, 533 (1992)CrossRefGoogle Scholar
  5. 5.
    H. M. O’Bryan and P. K. Gallagher, J. Mater. Res. 3, 619 (1988)CrossRefGoogle Scholar
  6. 6.
    P. S. Sung and Y. Cang, J. Sol-Gel Sc. Techn. 2, 881 (1994)CrossRefGoogle Scholar
  7. 7.
    C. Sanchez, S. Livage and M. Henry, J. Non-Cryst. Solid. 100, 65 (1988)CrossRefGoogle Scholar
  8. 8.
    D. Peter, J. of Sol-Gel Sc. Tec. 5, 5 (1995)CrossRefGoogle Scholar
  9. 9.
    C. Morterra, G. Cerrato and L. Ferroni, J. Chem. Soc. Faraday Trans. 91, 125 (1995)CrossRefGoogle Scholar
  10. 10.
    X. Bokimi, A. Morales, O. Navaro, M. Portilla, T. López, F. Tzompantzi and R. Gomez, J. Solid State Chem. 28 135 (1998)CrossRefGoogle Scholar
  11. 11.
    R. K. Govila, J. Mater. Sci. 26, 1545 (1991)CrossRefGoogle Scholar
  12. 12.
    R. K. Govila, C. Urbani, D. R. Kennedy and J. C. Mcneuer, J. Mater. Sci. 19, 3224 (1994)Google Scholar
  13. 13.
    P. D. Mercera, J. G. Vanommen, E. B. Doesburg, A. J. Burggraaf and J. R. Ross, Appl. Catal. 71, 363 (1991)CrossRefGoogle Scholar
  14. 14.
    J. P. Cheron, F. Tcheliebou and A. Boyer, J. Vac. Sci. Technol. A 10, 3207 (1992)CrossRefGoogle Scholar
  15. 15.
    B. I. Swanson, C. Machell, G.W. Beall and W. O. Milligan, J. Inorg. Chem. 40, 694 (1978)Google Scholar
  16. 16.
    T. H. Etsell and N. Flengas, Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. L. Ojeda
    • 1
  • A. Campero
    • 1
  1. 1.Department of ChemistryUniversidad Autonoma Metropolitana-IMexico

Personalised recommendations