Skip to main content

Electron Ratchets—Nonlinear Transport in Semiconductor Dot and Antidot Structures

  • Chapter

Abstract

All materials at finite temperature store a substantial amount of energy in the form of kinetic energy of electrons, atoms or molecules. It is an old and tempting idea to convert this undirected, thermal motion (heat) into directed, useful motion (work) by rectifying the random motion of particles [1,2]. However, we know that the attempt to do so is doomed to fail: in thermal equilibrium, work can not be extracted from heat—this is the essence of the Second Law of thermodynamics. The situation is different when the system is kept away from thermal equilibrium: then, the Second Law does not apply, and thermal motion can be rectified. A trivial way of doing this is to apply a bias voltage across a quantum point contact, i.e., a narrow constriction that limits electron flow [3,4]. The potential difference opens a gap in the occupation of states on either side of the point contact, disturbing thermal equilibrium. As described by the Landauer equation [5,6], it is essentially the voltage-induced lack in balance of thermal motion of the electrons, that leads to a net current towards the lower electro-chemical potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.V. Smoluchowski, Experimentell nachweisbare, der üblichen Thermodynamik wider-sprechende Molekularphänomene, Phys. Z. 13, 1069 (1912).

    MATH  Google Scholar 

  2. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1, Ch. 46. Addison Wesley, Reading, MA (1963).

    Google Scholar 

  3. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, One-dimensional transport and the quantization ofthe ballistic resistance, J. Phys. C. Solid State 21(8), L209-L214(1988).

    ADS  Google Scholar 

  4. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron-gas, Phys. Rev. Lett. 60(9), 848-850 (1988).

    ADS  Google Scholar 

  5. S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995).

    Google Scholar 

  6. R. Landauer, Electrical resistance of disordered one-dimensional lattices, Philos. Mag. 21, 863-867(1970).

    ADS  Google Scholar 

  7. P. Hänggi and R. Bartussek, in Nonlinear Physics of Complex Systems—Current Status and Future Trends (eds. J. Parisi, S.C. Müller, and W. Zimmermann), Springer, Berlin (1996).

    Google Scholar 

  8. R.D. Astumian, Thermodynamics and kinetics of a brownian motor, Science 276, 917 (1997).

    Google Scholar 

  9. F. Jülicher, A. Ajdari, and J. Prost, Modeling molecular motors. Rev. Mod. Phys. 69, 1269 (1997).

    ADS  Google Scholar 

  10. P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361, 57 (2002).

    MathSciNet  ADS  MATH  Google Scholar 

  11. J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari, Asymmetric pumping of particles, Phys. Rev. Lett. 72, 2652 (1994).

    ADS  Google Scholar 

  12. J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Directional motion of Brownian particles induced by a periodic asymmetric potential, Nature 370, 446 (1994).

    ADS  Google Scholar 

  13. R. Ketzmerick, M. Weiss, and F.-J. Elmer, Brownian motor, http://www.chaos.gwdg.de/java_gallery/brownian_motor/bm.html, http://monet.physik.unibas.ch/elmer/bm.

    Google Scholar 

  14. P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appl. Phys. A 75, 169(2002).

    Google Scholar 

  15. R.D. Astumian and P. Hänggi, Phys. Today 55(11) 33-39 (November, 2002).

    Google Scholar 

  16. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson, Molecular Biology of the Cell. Garland Publishing, New York (1994).

    Google Scholar 

  17. D. Bray, Cell Movements—from Molecules to Motility. Garland, New York (2001).

    Google Scholar 

  18. R.D. Astumian, Making molecules into motors, Sci. Am. 57, (July 2001).

    Google Scholar 

  19. J.S. Bader, R.W. Hammond, S.A. Henck, M.W. Deem, G.A. McDermott, J.M. Bustillo, J.W. Simpson, M.G.T., and J.M. Rothberg, DNA transport by a micromachined Brownian ratchet device, Proc. Nat. Acad. Sci (USA) 96, 13165 (1999).

    ADS  Google Scholar 

  20. L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, and A.J. Libchaber, Optical thermal ratchet, Phys. Rev. Lett. 74, 1504 (1995).

    ADS  Google Scholar 

  21. L. Gorre, E. loannidis, and P. Silberzan, Rectified motion of a mercury drop in an asymmetric structure, Europhys. Lett. 33, 267 (1996).

    ADS  Google Scholar 

  22. C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurcak, J.-Y. Courtois, and G. Grynberg, Ratchet for cold rubidium atoms: The asymmetric optical lattice, Phys. Rev. Lett. 82, 851 (1999).

    ADS  Google Scholar 

  23. H. Linke, P. Omling, H. Xu, and P.E. Lindelof, in Proceedings of the 23rd International Conference on the Physics of Semiconductors (eds. M. Scheffler and R. Zimmermann) World Scientific, Singapore 1593 (1996).

    Google Scholar 

  24. A. Lorke, S. Wimmer, B. Jäger, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Far-infrared and transport properties of antidot arrays with broken symmetry, Physica B 249-251, 312-316(1998).

    Google Scholar 

  25. A.M. Song, A. Lorke, A. Kriele, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Nonlinear electron transport in an asymmetric microjunction: A ballistic rectifier, Phys. Rev. Lett. 80(17), 3831-3834(1998).

    ADS  Google Scholar 

  26. H. Linke, W. Sheng, A. Löfgren, H.Q. Xu, P. Omling, and P.E. Lindelof, A quantum dot ratchet: Experiment and theory, Europhys. Lett. 44(3), 341-347 (1998).

    ADS  Google Scholar 

  27. H. Linke, T.E. Humphrey, A. Löfgren, A.O. Sushkov, R. Newbury, R.P. Taylor, and P. Omling, Experimental tunneling ratchets, Science 286(5448), 2314-2317 (1999).

    Google Scholar 

  28. A.M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, Room-temperature and 50 GHz operation of a functional nanomaterial, Appl. Phys. Lett. 79(9), 1357-1359(2001).

    ADS  Google Scholar 

  29. A.V. Oudenaarden and S.G. Boxer, Brownian ratchets: Molecular separations in lipid bilayers supported on patterned arrays, Science 285, 1046 (1999).

    Google Scholar 

  30. C.F. Chou, O. Bakajin, S.W.P Turner, T.A.J. Duke, S.S. Chan, E.C. Cox, H.G. Craighead, and R.H. Austin, Sorting by diffusion: An asymmetric obstacle course for continuous molecular separation, P. Natl. Acad. Sci. USA 96(24), 13762-13765 (1999).

    ADS  Google Scholar 

  31. H. Linke (ed.), Ratchets and Brownian Motors: Basics, Experiments and Applications, Special issue, Appl. Phys. A 75(2), 167-352 S (2002).

    Google Scholar 

  32. M.O. Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71, 1477 (1993).

    ADS  Google Scholar 

  33. R. Bartussek, P. Hänggi, and J.G. Kissner, Periodically rocked thermal ratchets, Europhys. Lett. 28, 459(1994).

    ADS  Google Scholar 

  34. T.E. Humphrey, H. Linke, and R. Newbury, Pumping heat with quantum ratchets, Physica E 11, 281 (2001).

    Google Scholar 

  35. T.E. Humphrey, R. Newbury, R.P. Taylor, and H. Linke, Reversible quantum Brownian heat engines for electrons, Phys. Rev. Lett. 89, 116801 (2002).

    ADS  Google Scholar 

  36. P. Reimann, M. Grifoni, and P. Hänggi, Quantum ratchets, Phys. Rev. Lett. 79, 10(1997).

    MathSciNet  ADS  MATH  Google Scholar 

  37. C.W.J. Beenakker and H. van Houten, in Solid State Physics Vol. 44 (eds. H. Ehrenreich and D. Turnbull), Academic Press, Boston (1991).

    Google Scholar 

  38. R. Landauer, in Nonlinearity in Condensed Matter (eds. A.R. Bishop, D.K. Campbell, P. Kumar, and S.E. Trullinger) Springer Verlag, Berlin (1987).

    Google Scholar 

  39. H. Linke, L. Christensson, P. Omling, and P.E. Lindelof, Stability of classical electron orbits in triangular electron billiards, Phys. Rev. B 56, 1440 (1997).

    ADS  Google Scholar 

  40. L. Christensson, H. Linke, P. Omling, P.E. Lindelof, K.-F. Berggren, and I.V. Zozoulenko, Classical and quantum dynamics of electrons in open, equilateral triangular billiards, Phys. Rev. B 57, 12306(1998).

    Google Scholar 

  41. J.P. Bird, Spectral characteristics of conductance fluctuations in ballistic quantum dots: The influence of finite magnetic field and temperature, Phys. Rev. B 52, 8295 (1995).

    ADS  Google Scholar 

  42. M. Persson, J. Pettersson, B.V. Sydow, P.E. Lindelof, A. Kristensen, and K.F. Berggren, Conductance oscillations related to the eigenenergy spectrum of a quantum dot in weak magnetic fields, Phys. Rev. B 52, 8921 (1995).

    ADS  Google Scholar 

  43. S.M. Reimann, M. Brack, A.G. Magner, J. Blaschke, and M.V.N. Murthy, Circular quantum billiard with a singular magnetic flux line, Phys. Rev. A 53, 39 (1996).

    ADS  Google Scholar 

  44. S.M. Reimann, M. Persson, P.E. Lindelof, and M. Brack, Shell structure of a circular quantum dot in a weak magnetic field, Z. Phys. B 101, 377 (1996).

    Google Scholar 

  45. M. Brack and R.K. Badhuri, Semiclassical Physics. Addison-Wesley, Reading, Massachusetts (1997).

    Google Scholar 

  46. M. Brack, J. Blaschke, S.C. Creagh, A.G. Magner, P. Meier, and S.M. Reimann, On the role of classical orbits in mesoscopic electronic systems, Z. Phys. D 40, 276 (1996).

    Google Scholar 

  47. H. Linke, W. Sheng, A. Svensson, A. Löfgren, L. Christensson, H. Xu, and P. Omling, Asymmetric nonlinear conductance of quantum dots with broken inversion symmetry, Phys. Rev. B 61, 15914 (2000).

    Google Scholar 

  48. H. Xu, Theory of nonlinear ballistic transport in quasi-one-dimensional constrictions, Phys. Rev. B 47, 15630(1993).

    Google Scholar 

  49. R.A. Webb, S. Washburn, and C.P. Umbach, Experimental study of nonlinear conductance in small metallic samples, Phys. Rev. B 37, 8455 (1988).

    ADS  Google Scholar 

  50. S.B. Kaplan, Structure in the rectifying behaviour of mesoscopic Si MOSFETs, Surf. Sci. 196, 93(1988).

    ADS  Google Scholar 

  51. P.A.M. Holweg, J.A. Kokkedee, J. Caro, A.H. Verbruggen, S. Radelaar, A.G.M. Jansen, and P. Wyder, Conductance fluctuations in a ballistic metallic point contact, Phys. Rev. Lett. 67, 2549(1991).

    ADS  Google Scholar 

  52. D.C. Ralph, K.S. Ralls, and R.A. Buhrmann, Ensemble studies of nonlinear conductance fluctuations in phase coherent samples, Phys. Rev. Lett. 70, 986 (1993).

    ADS  Google Scholar 

  53. R. Taboryski, A.K. Geim, M. Persson, and P.E. Lindelof, Nonlinear conductance at small driving voltages in quantum point contacts, Phys. Rev. B 49(11), 7813-7816 (1994).

    ADS  Google Scholar 

  54. A. Löfgren, H. Linke, C.A. Marlow, T.E. Humphrey, I. Shorubalko, P. Omling, R. Newbury, R.P. Taylor, P.E. Lindelof, L. Samuelson, I. Maximov, and W. Seifert, Symmetry of magneto-conductance fluctuations of quantum dots in the nonlinear transport regime, unpublished (2002).

    Google Scholar 

  55. N.K. Patel, J.T. Nicholls, L. Martin-Moreno, M. Pepper, J.E.F. Frost, D.A. Ritchie, and G.A.C. Jones, Evolution of half plateaus as a function of electric field in a ballistic quasi-one-dimensional constriction, Phys. Rev. B 44, 13549 (1991).

    Google Scholar 

  56. A. Kristensen, H. Bruus, A.E. Hansen, J.B. Jensen, P.E. Lindelof, C. Marckmann, J. Nygård, C.B. Sorensen, F. Beuscher, A. Forchel, and M. Michel, Bias and temperature dependence of the 0.7 conductance anomalityin quantum point contacts, Phys. Rev. B 62, 10950(2000).

    Google Scholar 

  57. M. Brooks, Quantum clockworks, New Sci. 28, (January, 22, 2000).

    Google Scholar 

  58. H.L. Edwards, Q. Niu, and A.L. de Lozanne, Cryogenic refrigerator, Appl. Phys. Lett. 63, 1815(1993).

    ADS  Google Scholar 

  59. H.L. Edwards, Q. Niu, G.A. Georgakis, and A.L. de Lozanne, Cryogenic cooling using tunneling structures with sharp energy features, Phys. Rev. B 52, 5714 (1995).

    ADS  Google Scholar 

  60. N.G.V. Kampen, Relative stability in nonuniform temperature, IBM Res. Develop. 32, 107 (1987).

    Google Scholar 

  61. M. Büttiker, Transport as a consequence of state-dependent diffusion, Z. Phys. B 68, 161 (1987).

    Google Scholar 

  62. R. Landauer, Motion out of noisy states, J. Stat. Phys. 53, 233 (1988).

    ADS  Google Scholar 

  63. J.M.R. Parrondo and P. Espanol, Criticism of Feynman’s analysis of the ratchet as a heat engine, Am. J. Phys. 64, 1125 (1996).

    ADS  Google Scholar 

  64. K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models, J. Phys. Soc. Jap. 66, 1234 (1997).

    ADS  Google Scholar 

  65. I.M. Sokolov, On the energetics of a nonlinear system rectifying thermal fluctuations, Europhys. Lett. 44, 278 (1998).

    ADS  Google Scholar 

  66. I. Derenyi and R.D. Astumian, Efficiency of Brownian heat engines, Phys. Rev. E 59, R6219(1999).

    ADS  Google Scholar 

  67. T. Hondou and K. Sekimoto, Unattainability of Carnot efficiency in the Brownian heat engine, Phys. Rev. E 62, 6021 (2000).

    ADS  Google Scholar 

  68. J.M.R. Parrondo and B.J. de Cisneros, Energetics of Brownian motors: A review, Appl. Phys. A 15, 193(2002).

    Google Scholar 

  69. J. Imry, in Directions in Condensed Matter Physics (eds. G. Grinstein and G. Mazenko), 101-163 World Scientific, Singapore (1986).

    Google Scholar 

  70. S. Ulreich and W. Zwerger, Where is the potential drop in a quantum point contact? Superlatt. Microstruct. 23(3-4), 719-730 (1998).

    ADS  Google Scholar 

  71. M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57(14), 1761-1764(1986).

    ADS  Google Scholar 

  72. M. Büttiker, Symmetry of electrical-conduction, IBM J. Res. Dev. 32(3), 317-334 (1988).

    Google Scholar 

  73. L.P. Kouwenhoven, B.J. van Wees, C.J.P.M. Harmans, J.G. Williamson, H. van Houten, C.W.J. Beenakker, C.T. Foxon, and J.J. Harris, Nonlinear conductance of quantum point contacts, Phys. Rev. B 39(11), 8040-8043 (1989).

    ADS  Google Scholar 

  74. A. Palevski, C.P. Umbach, and M. Heiblum, High-gain lateral hot-electron device, Appl. Phys. Lett. 55(14), 1421-1423 (1989).

    ADS  Google Scholar 

  75. R.I. Hornsey, A.M. Marsh, J.R.A. Cleaver, and H. Ahmed, High-current ballistic transport through variable-width constrictions in a high-mobility 2-dimensional electron-gas, Phys. Rev. B 51(11), 7010-7016 (1995).

    ADS  Google Scholar 

  76. D.R.S. Cumming and J.H. Davies, Electron-electron scattering in a high purity mesoscopic conductor, Appl. Phys. Lett. 69(22), 3363-3365 (1996).

    ADS  Google Scholar 

  77. A. Messica, A. Soibel, U. Meirav, A. Stern, H. Shtrikman, V. Umansky, and D. Mahalu, Suppression of conductance in surface superlattices by temperature and electric field, Phys. Rev. Lett. 78(4), 705-708 (1997).

    ADS  Google Scholar 

  78. H. Ueno, K. Moriyasu, Y. Wada, S. Osako, H. Kubo, N. Mori, and C. Hamaguchi, Conductance through laterally coupled quantum dots, Jpn. J. Appl. Phys. 38(1B), 332-335 (1999).

    ADS  Google Scholar 

  79. A.M. Song, Formalism of nonlinear transport in mesoscopic conductors, Phys. Rev. B 59(15), 9806-9809 (1999).

    ADS  Google Scholar 

  80. K. Hieke and M. Ulfward, Nonlinear operation of the Y-branch switch: Ballistic switching mode at room temperature, Phys. Rev. B 62(24), 16727-16730 (2000).

    Google Scholar 

  81. I. Shorubalko, H.Q. Xu, I. Maximov, P. Omling, L. Samuelson, and W. Seifert, Nonlinear operation of GalnAs/lnP-based three-terminal ballistic junctions, Appl. Phys. Lett. 79(9), 1384-1386(2001).

    ADS  Google Scholar 

  82. L. Worschech, H.Q. Xu, A. Forchel, and L. Samuelson, Bias-voltage-induced asymmetry in nanoelectronic Y-branches, Appl. Phys. Lett. 79(20), 3287-3289 (2001).

    ADS  Google Scholar 

  83. P.F. Bagwell and T.P. Orlando, Landauer conductance formula and its generalization to finite voltages, Phys. Rev. B 40(3), 1456-1464 (1989).

    ADS  Google Scholar 

  84. L.I. Glazman and A.V. Khaetskii, Nonlinear quantum conductance of a lateral microcon-straint in a heterostructure, Europhys. Lett. 9(3), 263-267 (1989).

    ADS  Google Scholar 

  85. O. Heinonen and M.D. Johnson, Mesoscopic transport beyond linear-response, Phys. Rev. Lett. 71(9), 1447-1450(1993).

    ADS  Google Scholar 

  86. M.D. Johnson and O. Heinonen, Nonlinear steady-state mesoscopic transport—formalism, Phys. Rev. B 51(20), 14421-14436 (1995).

    Google Scholar 

  87. M. Büttiker, Capacitance, admittance, and rectification properties of small conductors, J. Phys. Condens. Mat. 5(50), 9361-9378 (1993).

    ADS  Google Scholar 

  88. S. Komiyama and H. Hirai, Two representations of the current density in charge-transport problems, Phys. Rev. B 54(3), 2067-2090 (1996).

    ADS  Google Scholar 

  89. H.Q. Xu, Electrical properties of three-terminal ballistic junctions, Appl. Phys. Lett. 78(14), 2064-2066(2001).

    ADS  Google Scholar 

  90. A.M. Glas, D. von der Linde, and T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive progress in LiNb03, Appl. Phys. Lett. 25, 233-235 (1974).

    ADS  Google Scholar 

  91. V.I. Belinicher and B.I. Sturman, The photogalvanic effect in media lacking a center of symmetry, Sov. Phys. Usp. 23(3), 199-223 (1980).

    ADS  Google Scholar 

  92. B.I. Sturman and V.M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncen-trosymmetric Materials. Gordon and Breach, Philadelphia (1992).

    Google Scholar 

  93. D. Erta§, Lateral separation of macromolecules and polyelectrolytes in microlithographic arrays, Phys. Rev. Lett. 80(7), 1548-1551 (1998).

    ADS  Google Scholar 

  94. T.A.J. Duke and R.H. Austin, Microfabricated sieve for the continuous sorting of macromolecules, Phys. Rev. Lett. 80(7), 1552-1555 (1998).

    ADS  Google Scholar 

  95. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nanometer resolution, Science 272(5258), 85-87 (1996).

    ADS  Google Scholar 

  96. A.M. Song, A. Lorke, A. Kriele, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Experimental and theoretical studies on nonlinear electron transport in ballistic rectifiers, in Proceedings of the 24th International Conference on the Physics of Semiconductors (ed. D. Gershoni), World Scientific, Singapore, 1348 (1998).

    Google Scholar 

  97. A.M. Song, Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry, Appl. Phys. B 67(19), to be published May, 2002.

    Google Scholar 

  98. A. Löfgren, I. Shorubalko, P. Omling, and A.M. Song, Quantum behavior in nanoscale ballistic rectifiers and artificial materials, Phys. Rev. B, Vol. 67(19) 195-309 (2003).

    Google Scholar 

  99. B. Heidari, I. Maximov, E.L. Sarwe, and L. Montelius, Large scale nanolithography using nanoimprint lithography, J. Vac. Sci. Technol. B 17(6), 2961-2964 (1999).

    Google Scholar 

  100. M.L. Roukes, A. Scherer, S.J. Allen, H.G. Craighead, R.M. Ruthen, E.D. Beebe, and J.P. Harbison, Quenching of the Hall-effect in a one-dimensional wire, Phys. Rev. Lett. 59(26), 3011-3014(1987).

    ADS  Google Scholar 

  101. G. Timp, H.U. Baranger, P. Devegvar, J.E. Cunningham, R.E. Howard, R. Behringer, and P.M. Mankiewich, Propagation around a bend in a multichannel electron wave-guide, Phys. Rev. Lett. 60(20), 2081-2084 (1988).

    ADS  Google Scholar 

  102. H. van Houten, C.W.J. Beenakker, P.H.M. van Loosdrecht, T.J. Thornton, H. Ahmed, M. Pepper, C.T. Foxon, and J.J. Harris, Four-terminal magnetoresistance of a two-dimensional electron-gas constriction in the ballistic regime, Phys. Rev.B 37(14), 8534-8536(1988).

    Google Scholar 

  103. C.J.B. Ford, S. Washburn, M. Büttiker, CM. Knoedler, and J.M. Hong, Influence of geometry on the Hall-effect in ballistic wires, Phys. Rev. Lett. 62(23), 2724-2727 (1989).

    ADS  Google Scholar 

  104. C.W.J. Beenakkerand H. van Houten, Magnetotransport and nonadditivity of point-contact resistances in series, Phys. Rev. B 39(14), 10445-10448 (1989).

    Google Scholar 

  105. L.W. Molenkamp, A.A.M. Staring, C.W.J. Beenakker, R. Eppenga, C.E. Timmering, J.G. Williamson, C.J.P.M. Harmans, and C.T. Foxon, Phys. Rev. B 41, 1274 (1990).

    ADS  Google Scholar 

  106. J. Spector, H.L. Stormer, K.W. Baldwin, L.N. Pfeiffer, and K.W. West, Electron focusing in two-dimensional systems by means of an electrostatic lens, Appl. Phys. Lett. 56(13), 1290-1292(1990).

    ADS  Google Scholar 

  107. C.W.J. Beenakker and H. van Houten, Billiard model of a ballistic multiprobe conductor, Phys. Rev. Lett. 63(17), 1857-1860(1989).

    ADS  Google Scholar 

  108. K.L. Shepard, M.L. Roukes, and B.P Vandergaag, Direct measurement of the transmission matrix of a mesoscopic conductor, Phys. Rev. Lett. 68(17), 2660-2663 (1992).

    ADS  Google Scholar 

  109. R.I. Hornsey, Angular distributions of electrons transmitted ballistically through tapered constrictions, J. Appl. Phys. 79(12), 9172-9180 (1996).

    ADS  Google Scholar 

  110. H.U. Baranger and A.D. Stone, Quenching of the hall resistance in ballistic microstructures—A collimation effect, Phys. Rev. Lett. 63(4), 414-417 (1989).

    ADS  Google Scholar 

  111. A.M. Song, S. Manus, M. Streibl, A. Lorke, J.P. Kotthaus, W. Wegscheider, and M. Bichler, A nonlinear transport device with no intrinsic threshold, Superlatt. Microstruct. 25(1-2), 269-272(1999).

    ADS  Google Scholar 

  112. A.M. Song, A. Lorke, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Ballistic magneto-transport in a semiconductor microjunction with broken symmetry, Superlatt. Microstruct. 25(1-2), 149-152(1999).

    ADS  Google Scholar 

  113. R. Akis, D.K. Ferry, and J.P. Bird, Magnetotransport fluctuations in regular semiconductor ballistic quantum dots, Phys. Rev. B 54(24), 17705-17715 (1996).

    Google Scholar 

  114. A.M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, Operation of InGaAs/InP-based ballistic rectifiers at room temperature and frequencies up to 50 GHz, Japan J. Appl. Phys. 40(9AB), L909-L911 (2001).

    ADS  Google Scholar 

  115. P. Ramvall, N. Carlsson, P. Omling, L. Samuelson, W. Seifert, M. Stolze, and Q. Wang, Ga0.25In0.75As/InP quantum wells with extremely high and anisotropic two-dimensional electron gas mobilities, Appl. Phys. Lett. 68(8), 1111-1113 (1996).

    ADS  Google Scholar 

  116. Y. Hirayama and S. Tarucha, High-Temperature Ballistic Transport Observed in AlGaAs/InGaAs/GaAs small four-terminal structures, Appl. Phys. Lett. 63(17), 2366-2368 (1993).

    ADS  Google Scholar 

  117. I. Goychuk, M. Grifoni, and P. Hänggi, Nonadiabatic quantum Brownian rectifiers, Phys. Rev. Lett. 81,649(1998).

    ADS  Google Scholar 

  118. I. Goychuk and P. Hänggi, Quantum rectifiers from harmonic mixing, Europhys. Lett. 43, 503(1998).

    ADS  Google Scholar 

  119. M. Grifoni, M.S. Ferreira, J. Peguiron, and J. Majer, Multi-band quantum ratchets, Phys. Rev. Lett. 89, 146801 (2002).

    ADS  Google Scholar 

  120. S. Yukawa, M. Kikuchi, G. Tatara, and H. Matsukawa, Quantum ratchets, J. Phys. Soc. Japan 66, 2953(1997).

    MathSciNet  ADS  Google Scholar 

  121. H. Schanz, M.-F. Otto, R. Ketzmerick, and T Dittrich, Classical and quantum hamiltonian ratchets, Phys. Rev. Lett. 87, 070601 (2001).

    ADS  Google Scholar 

  122. P. Jung, J.G. Kissner, and P. Hänggi, Regular and chaotic transport in asymmetric periodic potentials: Inertia ratchets, Phys. Rev. Lett. 76, 3436 (1996).

    ADS  Google Scholar 

  123. J.L. Mateos, Chaotic transport and current reversal in deterministic ratchets, Phys. Rev. Lett. 84, 258 (2000).

    ADS  Google Scholar 

  124. H. Linke, T.E. Humphrey, R.P. Taylor, and R. Newbury, Chaos in quantum ratchets?, Phys. Scr. T90, 54(2001).

    Google Scholar 

  125. K.N. Alekseev, E.H. Cannon, J.C. Mc Kinney, F.V. Kusmartsev, and D.K. Campbell, Spontaneous dc current generation in a resistively shunted semiconductor superlattice driven by a terahertz Held, Phys. Rev. Lett. 80, 2669 (1998).

    ADS  Google Scholar 

  126. E. Trias, J.J. Mazo, F. Falo, and T.P. Orlando, Depinning of kinks in a Josephson-junction ratchet array, Phys. Rev. E 61(3), 2257-2266 (2000).

    ADS  Google Scholar 

  127. T.A. Fulton and G.J. Dolan, Observation of single-electron charging effects in small tunnel-junctions, Phys. Rev. Lett. 59(1), 109-112 (1987).

    ADS  Google Scholar 

  128. H. Ishikuro, T. Fujii, T. Saraya, G. Hashiguchi, T. Hiramoto, and T. Ikoma, Coulomb blockade oscillations at room temperature in a Si quantum wire metal-oxide-semiconductor field-effect transistor fabricated by anisotropic etching on a silicon-on-insulator substrate, Appl. Phys. Lett. 68(25), 3585-3587 (1996).

    ADS  Google Scholar 

  129. L. Zhuang, L.J. Guo, and S.Y Chou, Silicon single-electron quantum-dot transistor switch operating at room temperature, Appl. Phys. Lett. 72(10), 1205-1207 (1998).

    ADS  Google Scholar 

  130. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, and D.E. Prober, The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer, Science 280(5367), 1238-1242 (1998).

    ADS  Google Scholar 

  131. J.B. Majer, J. Peguiron, M. Grifoni, M. Tusveld, and J.E. Mooij, Quantum ratchet effects for vortices, Phys. Rev. Lett. 90, 056802 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linke, H., Song, A.M. (2003). Electron Ratchets—Nonlinear Transport in Semiconductor Dot and Antidot Structures. In: Bird, J.P. (eds) Electron Transport in Quantum Dots. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0437-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0437-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7459-2

  • Online ISBN: 978-1-4615-0437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics