Advertisement

Nano-Spintronics with Lateral Quantum Dots

  • A. Sachrajda
  • P. Hawrylak
  • M. Ciorga
Chapter

Abstract

Over the last decade there has been a tremendous increase in the research devoted to nanotechnology. This trend is driven both by the potential for new paradigms and technological applications as well as by the fundamental science suggested by new quantum regimes. More recently a similar explosion of effort has commenced in the field of spintronics and, in particular, in semiconductor spintronics [1]. The attraction of exploiting the electrons other quantum degree of freedom in semiconductors is clear, making it possible to examine novel device functionalities, achieve combined memory and logic functions and to explore the feasibility of spin-based qubits for quantum information applications. In this chapter we combine these two fields and consider a field we have termed Nano-spintronics. Nano-spintronics is related to spintronics in the same way that nano-electronics is to electronics—it is spintronics on the small scale and, ultimately, at the single spin level (single spintronics).

Keywords

Landau Level Negative Differential Resistance Coulomb Blockade Lower Landau Level Spin Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chytelkanova, and D.M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294, 1488-1495 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    M.F. Crommie, C.P. Lutz, and D.M. Eigler, Imaging standing waves in a two-dimensional electron gas, Nature 363, 524-527 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    P.M. Petroff and S.P. DenBaars, MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures, Superlatt. Microstruct. 15(1), 15-21 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    J. Lefebvre, P.J. Poole, J. Fraser, G.C. Aers, D. Chithrani, and R.L. Williams, Self-assembled In As quantum dots on InP nano-templates, J. Cryst. Growth 234(2-3), 391-398 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    T.J. Thorton, M. Pepper, H. Ahmed, D. Andrews and G.J. Davies, One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction, Phys. Rev. Lett. 56(11), 1198-1201 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    P. Hawrylak, Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: Theory and experiment, Phys. Rev. Lett. 71(20), 3347-3350 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots. Springer-Verlag, Berlin (1997).Google Scholar
  8. 8.
    J. Kyriakidis, M. Pioro-Ladriere, M. Ciorga, A.S. Sachrajda, and P. Hawrylak, Voltage-tunable singlet-triplet transition in lateral quanum dots, Phys. Rev. B 66(3), 35320-35327 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Lockwood, P. Hawrylak, P.D. Wang, C.M. Sotomayor Torres, A. Pinczuk, and B.S. Dennis, Shell structure and electronic excitations of quantum dots in a magnetic field probed by inelastic light scattering, Phys. Rev. Lett. 77(2), 354-357 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    P. Hawrylak, A. Wojs, and J.A. Brum, Magnetoexcitons and correlated electrons in quantum dots in a magnetic field, Phys. Rev. Lett. B 54(16), 11397-11409 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    A. Wensauer, M. Korkusiriski, and P. Hawrylak, Theory of the spin singlet filling factor v = 2 quantum Hall droplet, Phys. Rev. B 67, 035325 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    A. Wojs and P. Hawrylak, Spectral functions of quantum dots in the integer and fractional quantum Hall regime, Phys. Rev. B, 56(20), 13227-13234 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    P. Hawrylak, C. Gould, A.S. Sachrajda, Y. Feng, and Z. Wasilewski, Collapse of the Zeeman gap in quantum dots due to electronic correlations, Phys. Rev. B 59(4), 2801-2806(1999).ADSCrossRefGoogle Scholar
  14. 14.
    B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E. Timmering, M.E.I. Broekaart, C.T. Foxon, and J.J. Harris, Observation of zero-dimensional states in a one-dimensional electron interferometer, Phys. Rev. Lett. 62(21), 2523-2526 (1989); R.P. Taylor, A.S. Sachrajda, P. Zawadzki, P.T. Coleridge, and J.A. Adams, Aharonov-Bohm oscillations in the Coulomb blockade regime, Phys. Rev. Lett. 69(13), 1989-1992 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    G. Kirczenow, A.S. Sachrajda, Y. Feng, R.P. Taylor, L. Henning, J. Wang, P. Zawadzki, and P.T. Coleridge, Artifical impurties in quantum wires: From classical to quantum behaviour, Phys. Rev. Lett. 72(13), 2069-2072 (1994); C.J.B. Ford, P.J. Simpson, I. Zailer, D.R. Mace, M. Yosefin, M. Pepper, D.A. Ritchie, J.E.F. Frost, M.P. Grimshaw, and G.A.C. Jones, Charging and double-frequency Aharonov-Bohm effects in an open system, Phys. Rev. B 49(24), 17456-17459(1994).ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C 21(8), L209-L214 (1988); B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60(9), 848-850 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antoniadis, Conductance oscillations periodic in the density of a one-dimensional electron gas, Phys. Rev. Lett. 62(5),583-586(1989).ADSCrossRefGoogle Scholar
  18. 18.
    D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, and D. Park, Homogenous linewidths in the optical spectrum of a single gallium arsenide quantum dot, Science 273, 87-90 (1996); A. Kuther, M. Bayer, A. Forchel, A. Gorbumov, V.B. Timofeev, F. Schafer, and J.P. Reithhmeier, Zeeman splitting of excitons and biexcitons in single In0.60Ga0.40As/GaAs self assembled quantum dots, Phys. Rev. B 58(12), R7508-R7511 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, and N.S. Wingreen, Transport spectroscopy of a Coulomb island in the quantum Hall regime, Phys. Rev. Lett. 66(14), 1926-1929 (1991); P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen, and S.J. Wind, Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime, Phys. Rev. B 45(19), 11419-11422 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, Electron transport in quantum dots, in Mesoscopic electron transport, NATO ASI Conference Proceedings (eds. L.L. Sohn, L.P. Kouwenhoven, and G. Schön), Kluwer Academic, Dordrecht, (1997) (Series E 345).Google Scholar
  21. 21.
    L.P. Kouwenhoven, D.G. Austing, and S. Tarucha, Few-electron quantum dots, Rep. Prog. Phys 64(6), 701-731 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy, Phys. Rev. B 61(24), R16315-R16318 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    D. Sprinzak, Y. Ji, M. Heiblum, D. Mahalu, and H. Shtrikman, Charge distribution in a Kondo-correlated quantum dot, Phys. Rev. Lett. 88(17), 176805-176808 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schnidt, A. Waag, and L.W. Molenkamp, Injection and detection of a spin-polarized current in a light emitting diode, Nature 402, 787-790(1999)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Ohno, D.K. Young, F. Matsukura, H. Ohno, and D.D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature 402, 790-792 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    P.R. Hammar and M. Johnson, Detection of spin-polarized electrons injected into a two-dimensional electron gas, Phys. Rev. Lett. 88(6), 066806-066809 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    D.B. Chklovskii, B.I. Shklovskii, and L.I. Glazman, Electrostatics of edge channels, Phys. Rev. B 46(7), 4026-4034 (1992); R. Haug, Edge-state transport and its experimental consequences in high magnetic fields, Semicon. Sci. Tech. 8, 131-153 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    A.S. Sachrajda, P. Hawrylak, M. Ciorga, C. Gould, and P. Zawadzki, Spin polarized injection into a quantum dot by means of the spatial separation of spins, Physica E 10, 493-498 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    M. Ciorga, M. Pioro-Ladriere, P. Zawadzki, P. Hawrylak, and A.S. Sachrajda, Tunable negative differential resistance controlled by spin blockade in single-electron transistors, Appl. Phys. Lett. 80(12), 2177-2179 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    M. Pioro-Ladriere, Master Thesis, Étude par spectroscopic de Coulomb d’un boîte quantique latérale contenant de 1 à 12 électrons, University of Sherbrooke, Quebec, Canada (2002).Google Scholar
  31. 31.
    S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot, Phys. Rev. Lett. 77(17), 3613-3616 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, N-electron ground states of a quantum dot in magnetic field, Phys. Rev. Lett. 71(4), 613-616 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Brum and P. Hawrylak, Coupled quantum dots as quantum exclusive-OR gate, Superlatt. Microstruct. 22(3), 431-436 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    D. Loss and D.P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120-126(1998).ADSCrossRefGoogle Scholar
  35. 35.
    T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Allowed and forbidden transitions in artificial hydrogen and helium atoms, Nature 419, 278-281 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. v. Klitzing, A. Förster, and H. Lüth, Quantum-dot ground states in a magnetic field studied by single-electron tunneling spectroscopy on double-barrier heterostructures, Phys. Rev. B 51(8), 5570-5573 (1995); B. Su, V.J. Goldman, and J.E. Cunningham, Single-electron tunneling in nanometer-scale double-barrier heterostructure devices, Phys. Rev. B 46, 7644-7655 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    W.G. van der Wiel, T.H. Oosterkamp, J.W. Janssen, L.R Kouwenhoven, D.G. Austing, T. Honda, and S. Tarucha, Singlet-triplet transitions in a few electron quantum dot, Physica B 256-258, 173-177 (1998).ADSCrossRefGoogle Scholar
  38. 38.
    M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, Y. Feng, and Z. Wasilewski, Readout of a single electron spin based quantum bit by current detection, Physica E 11 35-40(2001).ADSCrossRefGoogle Scholar
  39. 39.
    L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, and S. Tarucha, Excitation spectra of circular, few-electron quantum dots, Science 278, 1788-1792(1997).ADSCrossRefGoogle Scholar
  40. 40.
    G. Burkard, H.A. Engel, and D. Loss, Spintronics and quantum dots for quantum computing and quantum communication, Fortschritte der Physik 48 (Special Issue on Experimental Proposals for Quantum Computation), 965-886 (2000).ADSCrossRefGoogle Scholar
  41. 41.
    S. Tarucha, D.G. Austing, Y. Tokura, W.G. van der Wiel, and L.P. Kouwenhoven, Direct Coulomb and exchange interaction in artificial atoms, Phys. Rev. Lett. 84(11), 2485-2488 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    M. Ciorga, A. Wensauer, M. Pioro-Ladriere, M. Korkusinski, J. Kyriakidis, A.S. Sachrajda, and P. Hawrylak, Collapse of the spin-singlet phase in quantum dots, Phys. Rev. Lett. 88(25), 256804-256807 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    D.G. Austing, Y. Tokura, T. Honda, S. Tarucha, M. Danoestastro, J. Janssen, T. Oosterkamp, and L. Kouwenhoven, Several- and many-electron artificial-atoms at filling factors between 2 and 1, Jpn. J. Appl. Phys. 38(1), 372-375 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    T.H. Oosterkamp, J.W. Janssen, L.P. Kouwenhoven, D.G. Austing, T. Honda, and S. Tarucha, Maximum-density droplet and charge redistributions in quantum dots at high magnetic fields, Phys. Rev. Lett. 82(14), 2931-2934 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    C. Gould, P. Hawrylak, A.S. Sachrajda, Y. Feng, P. Zawadzki, and Z. Wasilewski, Correlations effects in few-electron quantum dots between v = 2 and 1, Physica E 6, 461-465 (2000).ADSCrossRefGoogle Scholar
  46. 46.
    M. Ciorga, M. Korkusinski, M. Pioro-Ladriere, P. Zawadzki, P. Hawrylak, and A.S. Sachrajda, Simple spin textures in a quantum dot, Phys. Status Solidi, (in press).Google Scholar
  47. 47.
    J.H. Oaknin, L. Martín—Moreno, and C. Tejedor, Skyrmions and edge-spin excitations in quantum Hall droplets, Phys. Rev. B 54(23), 16850-16859 (1996).ADSCrossRefGoogle Scholar
  48. 48.
    J. Weis, R.J. Haug, K. v. Klitzing, and K. Ploog, Competing channels in single-electron tunneling through a quantum dot, Phys. Rev. Lett. 71(24), 4019-4022.Google Scholar
  49. 49.
    M. Ciorga, M. Pioro-Ladriere, P. Zawadzki, P. Hawrylak, and A.S. Sachrajda, The break-up of a lateral quantum dot into multiple dots in high magnetic fields, in Proceedings of the 26th International Conference on the Physics of Semiconductors, Edinburgh (2002), CD-ROM edition.Google Scholar
  50. 50.
    P. Hawrylak, Spin effects in quantum Hall droplets, in Proceedings of NATO ARW-Recent Trends in Theory of Physical Phenomena, I. Vagner, P. Wyder (eds.) (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • A. Sachrajda
    • 1
  • P. Hawrylak
    • 2
  • M. Ciorga
    • 1
  1. 1.Quantum Physics GroupUSA
  2. 2.Quantum Theory GroupInstitute for Microstructural Sciences, National Research Council of CanadaOttawaCanada

Personalised recommendations