Microwave Spectroscopy on Single and Coupled Quantum Dots

  • R. H. Blick
  • A. W. Holleitner
  • H. Qin


The overwhelming strength of quantum dot physics is found in the experimenter’s ability to devise and test a broad variety of artificial molecular structures. This has been widely used to study the electron-electron interaction in terms of Coulomb blockade of single electron transport [1]. Moreover, the atomic and molecluar characteristics of quantum dots [2] is most prominently expressed in transport spectroscopy on excited N-electron states and the corresponding magnetic field dispersion. It is this similarity to real atoms and molecules which led to considering quantum dots for quantum information processing [3,4]. A number of proposals have been introduced how to integrate these artificial molecules (as shown in Fig. 2.1) for building such quantum computing devices [5,6]. The straightforward realization of a quantum bit (qubit) is given, e.g. by coupling two of these quantum dots and hence forming the most simple form of an artificial hydrogen molecule. Fabricated with great accuracy in a whole variety of circuits the molecular binding mechanisms can be probed [7-9]. Apart from these computational aspects quantum dots allow probing the foundations of quantum mechanics, since by now not only single charges can be manipulated but also the spin degree of freedom.


Microwave Radiation Gate Voltage Tunnel Barrier Coulomb Blockade Microwave Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, in Mesoscopic Electron Transport, Series E, Vol. 345, ed. L.L. Sohn, L.P. Kouwenhoven and G. Schön. 105, Kluwer Dordrecht, Netherlands (1997).Google Scholar
  2. 2.
    R. Ashoori, Nature 379, 413 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    R. Landauer, Phys. Lett. A 217, 188 (1996).MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press (2000).zbMATHGoogle Scholar
  5. 5.
    D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998); P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000); Xuedong Hu and S. Das Sarma, cond-mat/0101102 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    R.H. Blick and H. Lorenz, Proc. IEEE Int. Symp. Circ. Sys. II-245, 28 (2000).Google Scholar
  7. 7.
    R.H. Blick, D. Pfannkuche, R.J. Haug, K. von Klitzing, and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    A.W. Holleitner, H. Qin, C.R. Decker, K. Eberl, and R.H. Blick, Phys. Rev. Lett. 87, 256802 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    A.W. Holleitner, R.H. Blick, A.K. Hüttel, K. Eberl, and J.P. Kotthaus, Science 297, 70 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Nakamura, Yu A. Pashkin, and J.S. Tsai, Nature 398, 786 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    L.P. Kouwenhoven, S. Jauhar, J. Orenstein, P.L. McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev. Lett. 73, 3443 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    R.H. Blick, R.J. Haug, D.W. van der Weide, K. von Klitzing, and K. Eberl, Appl. Phys. Lett. 67, 3924 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    T.H. Oosterkamp, L.P. Kouwenhoven, A.E.A. Koolen, N.C. van der Vaart, and C.J.P.M. Harmans, Nature 78, 1536 (1997).Google Scholar
  14. 14.
    R.H. Blick, D.W. van der Weide, R.J. Haug, and K. Eberl, Phys. Rev. Lett. 81, 689 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, and L.P. Kouwenhoven, Nature 395, 873 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    H. Qin, A.W. Holleitner, K. Eberl, and R.H. Blick, Phys. Rev. B 64, R241302 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    A.W. Holleitner, F. Simmel, B. Inner, R.H. Blick, J.P Kotthaus, A. Ustinov, and K. Eberl, N. J. Phys. 2, 2 (2000).CrossRefGoogle Scholar
  18. 18.
    C. Bruder and H. Schoeller, Phys. Rev. Lett. 72, 1076 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    C.A. Stafford and N.S. Wingreen, Phys. Rev. Lett. 76, 1916 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    T.H. Stoof and Yu.V. Nazarov, Phys. Rev. B 53, 1050 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    A.W. Holleitner, F. Simmel, B. Irmer, R.H. Blick, J.P. Kotthaus, M. Bichler, and W. Wegscheider, Terahertz Spectroscopy and Applications II in Proceedings of SPIE (ed. J.M. Chamberlain) 3828, 194 (2000).Google Scholar
  22. 22.
    A. Tilke, M. Vogel, F. Simmel, A. Kriele, R.H. Blick, D.A. Wharam, and J.P. Kotthaus, J. Vac. Sci. Technol. B 17, 1594 (1999).CrossRefGoogle Scholar
  23. 23.
    R.H. Blick, PhD Thesis, Künstliche Atome und Moleküle: Gekoppelte Quantenpunkte und Mikrowellenspektroskopie an Quantenpunkten, Max-Planck-Institut für Festkörperphysik und Universität Stuttgart (December 1995); Physics 57. Publishing Company Harri-Deutsch, Frankfurt am Main, Germany (1996), ISBN 3-8171-1507-5.Google Scholar
  24. 24.
    H. Qin, F. Simmel, R.H. Blick, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. B 63, 035320 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    U.S. patent 5,748,309, van der Weide et al., May 5 (1998).Google Scholar
  26. 26.
    H. Qin, D.W. van der Weide, J. Truitt, K. Eberl, and R.H. Blick, Nanotechnology (2002) 14, 60-64 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    R.H. Blick, D.W. van der Weide, R.J. Haug, and K. Eberl, Phys. Rev. Lett. 81,689 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    B. Irmer, F. Simmel, R.H. Blick, H. Lorenz, J.P. Kotthaus, M. Bichler, and W. Wegscheider, Special Issue on Mesoscopic Superconductivity, Superlattices and Microstructures 25, 785 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    A.V. Ustinov, Physica D 123, 315 (1998).ADSGoogle Scholar
  30. 30.
    D. Pfannkuche, Habilitation Thesis, Aspects of Coulomb Interaction in Semiconductor Nanostructures, Max-Planck-Institut für Festkörperforschung and Universität Karlsruhe, (September 1999).Google Scholar
  31. 31.
    P.K. Tien and J.P. Gordon, Physical Review 129, 647 (1963).ADSCrossRefGoogle Scholar
  32. 32.
    F.R. Waugh, M.J. Berry, D.J. Mar, R.M. Westervelt, K.L. Campman, and A.C. Gossard, Phys. Rev. Lett. 75, 705 (1995).ADSCrossRefGoogle Scholar
  33. 33.
    R.H. Blick, R.J. Haug, J. Weis, D. Pfannkuche, K. von Klitzing, and K. Eberl, Phys. Rev. B 53, 7899 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    C. Livermore, C.H. Crouch, R.M. Westervelt, K.L. Campman, and A.C. Gossard, Science 274, 1332 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    T. Fujisawa, T.H. Oosterkamp, W.G. van der Wiel, B.W. Broer, R. Aguado, S. Tarucha, and L.P. Kouwenhoven, Science 282, 932 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    F.W. Beil, A. Wixforth, and R.H. Blick, Physica E 13, 473 (2002).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Fu and S.C. Dudley, Phys. Rev. Lett. 70, 65 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 71, 465 (1993).ADSCrossRefGoogle Scholar
  40. 40.
    W. Kohn, Phys. Rev. 123, 1242 (1961).ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    T. Brandes, F. Renzoni, and R.H. Blick, Phys. Rev. B 64, R 035319 (2001).ADSCrossRefGoogle Scholar
  42. 42.
    H. Grabert and M.H. Devoret (eds.) Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, No. 294 in Series B: Physics. NATO Advanced Study Institute, Plenum, New York (1992).Google Scholar
  43. 43.
    D.V. Averin and Y.V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).ADSCrossRefGoogle Scholar
  44. 44.
    A.A. Odintsov, V. Bubanja, and G. Schön, Phys. Rev. B 46, 6875 (1990).ADSCrossRefGoogle Scholar
  45. 45.
    S. DeFranceschi, S. Sasaki, J.M. Elzerman, W.G. van der Wiel, S. Tarucha, and L.P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    R.H. Blick, V. Gudmundsson, R.J. Haug, K. von Klitzing, and K. Eberl, Phys. Rev. Rap. Comm. 57, R12685 (1998).ADSGoogle Scholar
  47. 47.
    A.K. Hüttel, J. Weber, A.W. Holleitner, D. Weinmann, K. Eberl, and R.H. Blick, submitted to Phys. Rev. Lett. (2002).Google Scholar
  48. 48.
    E.M. Höhberger, F.W. Beil, R.H. Blick, W. Wegscheider, M. Bichler, and J.P. Kotthaus, Physica E 12, 487 (2002); J. Kirschbaum, E.M. Höhberger, R.H. Blick, W. Wegscheider, and M. Bichler, Appl. Phys. Lett. 81, 280 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • R. H. Blick
    • 1
    • 2
  • A. W. Holleitner
    • 1
  • H. Qin
    • 1
  1. 1.Center for NanoScience and Sektion PhysikLudwig-Maximilians-UniversitätMünchenGermany
  2. 2.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations