Advertisement

Carbon Nanotubes for Nanoscale Spin-Electronics

  • B. Alphenaar
  • S. Chakraborty
  • K. Tsukagoshi

Abstract

During the last ten years, spin electronics has grown rapidly, with the development of spin electronic magnetic tunnel junctions (MTJs) [1], giant magnetoresistive (GMR) devices, and spin valves [2] for applications as nonvolatile magnetic memory and magnetic read heads. These devices are based on a two-terminal ferromagnetic/non-ferromagnetic layer structure in which the magnetic moments of the ferromagnetic layers rotate independently of each other. Due to spin scattering at the ferromagnetic/ non-ferromagnetic interface, the resistance is high when the ferromagnetic moments are anti-parallel, and low when the ferromagnetic moments are parallel, resulting in a bi-state spin resistor. The percent change in resistance is \( \Delta R/{R_a} = ({R_a} - {R_p})/{R_a} \) where R a and R p are the resistances in the anti-parallel and parallel configurations, respectively.

Keywords

Carbon Nanotubes Spin Polarization Coulomb Blockade Spin Injection Magnetic Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Moodera, J. Nassar, and G. Mathon, Spin tunneling in ferromagnetic junctions, Annu. Rev. Mater. Sci. 29, 381 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    S.S.P. Parkin, Giant magnetoresistance in magnetic nanostructures, Annu. Rev. Mater. Sci. 25, 357(1995).ADSCrossRefGoogle Scholar
  3. 3.
    G.A. Prinz, Magnetoelectronics, Science 282, 1660 (1998); J. Gregg, W. Allen, N. Viart, R. Kirschman, C. Sirisathitkul, J.P. Schille, M. Gester, S. Thompson, P. Sparks, V. DaCosta, K. Ounadjela, and M. Skvarla, The art of spin electronics, J. Mag. Mag. Mat. 175, 1 (1997); J. de Boeck and G. Borghs, Magnetoelectronics, Phys. World 12, 27 (1999).CrossRefGoogle Scholar
  4. 4.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, Singapore, 1998); C. Dekker, Carbon nanotubes as molecular quantum wires, Phys. Today 52, 22 (1999).CrossRefGoogle Scholar
  5. 5.
    Z. Yao, H.W.C. Postma, L. Balents, and C. Dekker, Crossed nanotube intramolecular junctions, Nature 402, 273 (1999); M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, YG. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, and RL. McEuen, Crossed nanotube junctions, Science 288, 494 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Tans, A.R.M. Verschueren, and C. Dekker, Room temperature transistor based on single walled carbon nanotube, Nature 393,49 (1998); R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447(1998).ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker, Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474 (1997); M. Bockrath, D.H. Cobden, PL. McEuen, N.G. Chopra, A. Zettl, A. Thess, and R.E. Smalley, Single-electron transport in ropes of carbon nanotubes, Science 275, 1922 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    L. Liu, G.Y Guo, C.S. Jayanthi, and S.Y Wu, Colossal paramagnetic moments in metallic carbon nanotori, Phys. Rev. Lett. 88, 217206 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    D.H. Cobden, M. Bockrath, PL. McEuen, A.G. Rinzler, and R.E. Smalley, Spin splitting and even-odd effects in carbon nanotubes, Phys. Rev. Lett. 81, 681 (1998); S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, and C. Dekker, Electron-electron correlations in carbon nanotubes, Nature 394, 761 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    L. Balents and R. Egger, Spin transport of interacting quantum wires and carbon nanotubes, Phys. Rev. Lett. 85, 3464 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    P.M. Tedrow and R. Meservey, Direct observation of spin-state mixing in superconductors,Phys. Rev. Lett. 27, 919(1971).ADSCrossRefGoogle Scholar
  12. 12.
    M. Julliere, Tunneling between ferromagnetic films, Phys. Lett. 54A, 225 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett. 74, 3273 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    T. Miyazaki, TMR for next generation hard disk and memory, Nikkei Electron. 771, 165 (2000).Google Scholar
  15. 15.
    M. Johnson and R.H. Silsbee, Spin-injection experiment, Phys. Rev. B 37, 5326 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    M. Johnson, Spin accumulation in gold films, Phys. Rev. Lett. 70, 2142 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56, 665(1990).ADSCrossRefGoogle Scholar
  18. 18.
    A. Cabbibo, J.R. Childress, S.J. Pearton, F. Ren, and J.M. Kuo, Fabrication of spin-current field-effect transistor structures, J Vac. Sci. Tech. A 15, 1215(1997); S.Gardelis, C.G.Smith, C.H.W. Barnes, E.H. Linfield, and D.A. Ritchie, Spin-valve effects in a semiconductor field effect transistor: a spintronic device, Phys. Rev. B 60, 7764 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    CM. Hu, J. Nitta, A. Jensen, J.B. Hansen, and H. Takayanagi, Spin polarized transport in a two dimensional electron gas with inter-digital-ferromagnetic ohmic contacts (preprint).Google Scholar
  20. 20.
    EG. Monzon, H.X. Tang and M.L. Roukes, Magnetoelectronic phenomena at a ferromagnet-semiconductor interface, Phys. Rev. Lett. 84, 5022 (2000); B.J. van Wees, Comment on observation of spin injection at a ferromagnet-semiconductor interface, Phys. Rev. Lett. 84, 5023 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    M. Johnson, B.R. Bennett, M.J. Yang, M.M. Miller, and B.V. Shanabrook, Hybrid hall effect device, Appl. Phys. Lett. 71, 974 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    F.J. Jedema, A.T. Filip, and B.J. van Wees, Observation of spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve, Nature 410, 345 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    A.T. Filip, B.H. Hoving, F.J. Jedema, and B.J. van Wees, Experimental search for the electrical spin injection in a semiconductor, Phys. Rev. B 62, 9996 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    T. Valet and A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099(1993).ADSCrossRefGoogle Scholar
  25. 25.
    G. Schmidt, A basic obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62, R4790 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Kikkawa and D.D. Awschalom, Lateral drag of spin coherence in gallium arsenide, Nature 397, 139(1999).ADSCrossRefGoogle Scholar
  27. 27.
    S. Alvardo and M. Renaud, Observation of spin polarized tunneling from a ferromagnet into GaAs, Phys. Rev. Lett. 68, 1387 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Injection and detection of a spin-polarized current in a light-emitting diode, Nature 402, 787 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature 402, 790 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    R. Fitzgerald, Magnetic semiconductors enable efficient electrical spin injection, Phys. Today 53, 21(2000).Google Scholar
  31. 31.
    For a review see H. Dai, Carbon nanotubes: Opportunities and challenges, Surf. Sci. 500, 218(2002).ADSCrossRefGoogle Scholar
  32. 32.
    K. Tsukagoshi, B.W. Alphenaar, and H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    D. Orgassa, G.J. Mankey, and H. Fujiwara, Spin injection into carbon nanotubes and a possible application in spin-resolved scanning tunneling microscopy, Nanotechnology, 12, 281 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    B. Zhao, I. Monch, T. Muhl, H. Vinzelberg, and CM. Schneider, Spin-dependent transport in multiwalled carbon nanotubes, J. Appl. Phys. 91, 7026 (2002); B. Zhao, I. Monch, H. Vinzelberg, and CM. Schneider, Spin-coherent transport in ferromagnetically contacted carbon nanotubes, Appl. Phys. Lett. 80, 3144 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    O. Chauvet, G. Baumgartner, M. Carrard, W. Basca, D. Ugarte, W.A. de Heer, and L. Forro, ESR study of potasium-doped aligned carbon nanotubes, Phys. Rev.B 53, 13996 (1996); A.S. Kotosonov and D.V. Shilo, Electron spin resonance study of carbon nanotubes, Carbon 36, 1649(1998).ADSCrossRefGoogle Scholar
  36. 36.
    C Schonenberger, A. Bachtold, C Strunk, J.P. Salvetat, and L. Forro, Interference and interaction in multi-wall carbon nanotubes, Appl. Phys.A 69, 283 (1999).ADSCrossRefGoogle Scholar
  37. 37.
    J. Fabian and S.D. Sarma, Spin relaxation of conduction electrons, J. Vac. Sci. Technol. B 17, 1708(1999).CrossRefGoogle Scholar
  38. 38.
    I.I. Oleinik, E.Y Tsymbal, and D.G. Pettifor, Structural and electronic properties of Co/Al2O3/Co magnetic tunnel junction from first principles, Phys. Rev. B 62, 3952 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    U. Rudiger, J. Yu, L. Thomas, S.S.P. Parkin, and A.D.M. Kent, Magnetoresistance, micro-magnetism, and domain-wall scattering in epitaxial hep Co films, Phys. Rev. B 59, 11914 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    J.H. Thomas, Electrical properties of thin cobalt oxide films on cobalt, Thin Solid Films 44, 155(1977).ADSCrossRefGoogle Scholar
  41. 41.
    D.V. Dimitrov, G.C Hadjipanayis, V Papaefthymiou, and A. Simopoulos, Magnetic properties and microstructure of Fe-O and Co-0 thin films, IEEE Trans. Mag. 33, 4363 (1997).ADSCrossRefGoogle Scholar
  42. 42.
    B.W. Alphenaar, K. Tsukagoshi, and M. Wagner, Spin transport in nanotubes, J. Appl. Phys. 89, 6863(2001).ADSCrossRefGoogle Scholar
  43. 43.
    E.Y. Tsymbal and D.G. Pettifor, Modeling of spin polarized electron tunneling from 3d ferromagnets, J. Phys. C 9, L411 (1997).Google Scholar
  44. 44.
    P. LeClair, B. Hoex, H. Wieldraaijer, J.T. Kohlhepp, H.J.M. Swagten, and W.J.M. de Jonge, Sign reversal of spin polarization in Co/Ru/Al2O3/Co magnetic tunnel junctions, Phys. Rev. B 64, 100406(2001).CrossRefGoogle Scholar
  45. 45.
    J.M. De Teresa, A. Barthelemy, A. Fert, J.P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaures, Phys. Rev. Lett. 82, 4288 (1999).ADSCrossRefGoogle Scholar
  46. 46.
    M. Sharma, S.X. Wang, and J.H. Nickel, Phys. Rev. Lett. 82, 616 (1999).ADSCrossRefGoogle Scholar
  47. 47.
    J.S. Moodera, J. Nowak, L.R. Kinder, P.M. Tedrow, R.J.M. van de Veerdonk, B.A. Smits, M. van Kampen, H.J.M. Swagten, and W.J.M. de Jonge, Quantum well states in spin-dependent tunnel structures, Phys. Rev. Lett. 83, 3029 (1999).ADSCrossRefGoogle Scholar
  48. 48.
    A. Jensen, J. Nygaard, J. Borggreen, and B.W. Alphenaar, Spin transport in single wall carbon nanotubes with ferromagnetic contacts, unpublished.Google Scholar
  49. 49.
    S. Takahashi and S. Maekawa, Effect of coulomb blockade on magnetoresistance in ferromagnetic tunnel junctions, Phys. Rev. Lett. 80, 1758 (1998).ADSCrossRefGoogle Scholar
  50. 50.
    K. Ono, H. Shimada, and Y Ootuka, Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor, J. Phys. Soc. Jap. 66, 1261 (1997); L.F. Schep, A. Fert, F. Fettar, P. Holody, S.F. Lee, J.L. Maurice, F. Petroff, and A. Vaures, Spin dependent tunneling with coulomb blockade, Phys. Rev. B 56, R5747 (1997).ADSCrossRefGoogle Scholar
  51. 51.
    H. Imamura, S. Takahashi, and S. Maekawa, Spin dependent coulomb blockade in ferromagnet/normal-metal/ferromagnet double tunnel junctions, Phys. Rev. B 59, 6017 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    A. Brataas and X.H. Wang, Linear-response conductance and magnetoresistance of ferromagnetic single-electron transistors, Phys. Rev. B 64, 104434 (2001).ADSCrossRefGoogle Scholar
  53. 53.
    S.S.P Parkin, Cambridge University Condensed Matter Seminar (January 14, 2000).Google Scholar
  54. 54.
    H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, Carbon nanotube based magnetic tunnel junctions, Phys. Rev. Lett. 84, 2682 (2000).ADSCrossRefGoogle Scholar
  55. 55.
    C. Kane, L. Balents, and M.P.A. Fischer, Coulomb interactions and mesoscopic effects in carbon nanotubes, Phys. Rev. Lett. 79, 5086 (1997); R. Egger and A.O. Gogolin, Effective low-energy theory for correlated carbon nanotubes, Phys. Rev. Lett. 79, 5082 (1997).ADSCrossRefGoogle Scholar
  56. 56.
    A. Bachtold, M. de Jonge, K. Grove-Rasmussen, PL. McEuen, M. Buitelaar, and C. Schonenberger, Supression of tunneling into multiwall carbon nanotubes, Phys. Rev. Lett. 87, 166801 (2001).ADSCrossRefGoogle Scholar
  57. 57.
    Q.M. Si, Probing spin-charge transport using spin transport, Physica C 341, 1519 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • B. Alphenaar
    • 1
  • S. Chakraborty
    • 1
  • K. Tsukagoshi
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.The Institute of Physical and Chemical Research (RIKEN)SaitawaJapan

Personalised recommendations