Advertisement

Quantum-Dot Cellular Automata

  • C. S. Lent
  • G. L. Snider
  • G. Bernstein
  • W. Porod
  • A. Orlov
  • M. Lieberman
  • T. Fehlner
  • M. Niemier
  • P. Kogge
Chapter

Abstract

The first digital electronic computers were the result of two very good ideas: first, use binary numbers to represent information mathematically; and second, physically represent the binary “1” and “0” as the “on” and “off” states of a current switch. Konrad Zuse in the 1930s first used electromechanical relays as the current switches, and later changed to vacuum tube triodes. These were eventually replaced by the solid-state version, the semiconductor transistor. Modern CMOS involves a clever use of switches paired so that current flows only when the state of the pair changes. Representing binary information by turning current switch on or off has been one of the most fruitful ideas in the history of technology.

Keywords

Cellular Automaton Tunnel Junction Majority Gate Magnetic Force Microscopy Image Micromagnetic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Quantum cellular automata, Nanotechnology 4(1), 49-57 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    C.S. Lent and P.D. Tougaw, Lines of interacting quantum-dot cells: A binary wire, J. Appi Phys. 74(10), 6227-6233 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    P.D. Tougaw, C.S. Lent, and W. Porod, Bistable saturation in coupled quantum-dot cells, J. Appi Phys. 74(5), 3558-3566 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    C.S. Lent, P.D. Tougaw, and W. Porod, Bistable saturation in coupled quantum dots for quantum cellular automata, Appi Phys. Lett. 62(7), 714-716 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    C.S. Lent and P.D. Tougaw, Bistable saturation due to single electron charging in rings of tunnel junctions, J. Appi. Phys. 75(8), 4077-4080 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    P.D. Tougaw and C.S. Lent, Logical devices implemented using quantum cellular automata, J. Appi. Phys. 75(3), 1818-1825 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    P.D. Tougaw and C.S. Lent, Effect of stray charge on quantum cellular-automata, Japan J. Appi Phys. 34(8B), 4373-4375 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    C.S. Lent, P.D. Tougaw, and W. Porod, Quantum cellular automata: The physics of computing with arrays of quantum dot molecules, in Proceedings Workshop on Physics and Computation—PhysComp ‘94, 5-13 (1994).CrossRefGoogle Scholar
  9. 9.
    G. Toth, P.D. Tougaw, and C.S. Lent, Dynamic behavior of quantum cellular automata, J. Appi. Phys. 80(8), 4722-4736 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Lent and P.D. Tougaw, A device architecture for computing with quantum dots, Proc. IEEE 85(4), 541-557 (1997).CrossRefGoogle Scholar
  11. 11.
    G. Toth and C.S. Lent, Quasiadiabatic switching for metal-island quantum-dot cellular automata, J. Appi. Phys. 85(5), 2977-2984 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    K. Hennessy and C.S. Lent, Clocking of molecular quantum-dot cellular automata, J. Vac. Sci. Technol. B 19(5), 1752-1755 (2001).CrossRefGoogle Scholar
  13. 13.
    G. Toth and C.S. Lent, Role of correlation in the operation of quantum-dot cellular automata, J. Appi. Phys. 89(12), 7943-7953 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    G. Toth and C.S. Lent, Quantum computing with quantum-dot cellular automata, Phys. Rev. A 63(5), 052315 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    J. Timler and C.S. Lent, Power gain and dissipation in quantum-dot cellular automata, J. Appi. Phys. 91(2), 823-831 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    G. Bazan, A.O. Orlov, G.L. Snider, and G.H. Bernstein, Charge detector realization for AlGaAs/GaAs quantum-dot cellular automata, J. Vac. Sci. Technol B 14(6), 4046-4050 (1996).CrossRefGoogle Scholar
  17. 17.
    G.H. Bernstein, G. Bazan, M.H. Chen, C.S. Lent, J.L. Merz, A.O. Orlov, W. Porod, G.L. Snider, and P.D. Tougaw, Practical issues in the realization of quantum-dot cellular automata, Superlatt. Microstruct. 20(4), 447-459 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    G.H. Bernstein, I. Amlani, A.O. Orlov, and G.L. Snider, Si-compatible quantum-dot cellular automata, in Silicon Nanoelectronics Workshop (1997). (Workshop Abstracts, 38-39).Google Scholar
  19. 19.
    A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, and G.L. Snider, Realization of a functional cell for quantum-dot cellular automata, Science 277(5328), 928-930 (1997).CrossRefGoogle Scholar
  20. 20.
    I. Amlani, A.O. Orlov, G.L. Snider, C.S. Lent, and G.H. Bernstein, External charge state detection of a double-dot system, Appl. Phys. Lett. 71(12), 1730-1732 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    I. Amlani, A.O. Orlov, G.L. Snider, and G.H. Bernstein, Differential charge detection for quantum-dot cellular automata, J. Vac. Sci. Technol. B 15(6), 2832-2835 (1997).CrossRefGoogle Scholar
  22. 22.
    I. Amlani, A.O. Orlov, G.L. Snider, C.S. Lent, and G.H. Bernstein, Demonstration of a six-dot quantum cellular automata system, Appl. Phys. Lett. 72(17), 2179-2181(1998).ADSCrossRefGoogle Scholar
  23. 23.
    I. Amlani, A.O. Orlov, G.L. Snider, C.S. Lent, and G.H. Bernstein, Demonstration of a functional quantum-dot cellular automata cell, J. Vac. Sci. Technol. B 16(6), 3795-3799 (1998).CrossRefGoogle Scholar
  24. 24.
    A.O. Orlov, I. Amlani, G. Toth, C.S. Lent, G.H. Bernstein, and G.L. Snider, Correlated electron transport in coupled metal double dots, Appl. Phys. Lett. 73(19), 2787-2789 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    G.L. Snider, A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, J.L. Merz, and W. Porod, Experimental demonstration of quantum-dot cellular automata, Semicond. Sci. Technol. 13(8A), A130-A134, Suppl. S (1998).ADSCrossRefGoogle Scholar
  26. 26.
    I. Amlani, A.O. Orlov, G. Toth, C.S. Lent, G.H. Bernstein, and G.L. Snider, Digital logic gate using quantum-dot cellular automata, Science 284(5412), 289-291 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    G.H. Bernstein, I. Amlani, A.O. Orlov, C.S. Lent, and G.L. Snider, Observation of switching in a quantum-dot cellular automata cell, Nanotechnology 10(2), 166-173 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    A.O. Orlov, I. Amlani, G. Toth, C.S. Lent, G.H. Bernstein, and G.L. Snider, Experimental demonstration of a binary wire for quantum-dot cellular automata, Appl. Phys. Lett. 74(19), 2875-2877(1999).ADSCrossRefGoogle Scholar
  29. 29.
    G.L. Snider, A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, J.L. Merz, and W. Porod, Quantum-dot cellular automata: Line and majority logic gate, Japan J. Appl. Phys. 38(12B), 7227-7229(1999).ADSGoogle Scholar
  30. 30.
    G. Toth, A.O. Orlov, I. Amlani, C.S. Lent, G.H. Bernstein, and G.L. Snider, Conductance suppression due to correlated electron transport in coupled double quantum dots, Phys. Rev. B 60(24), 16906-16912 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    I. Amlani, A.O. Orlov, R.K. Kummamuru, G.H. Bernstein, C.S. Lent, and G.L. Snider, Experimental demonstration of a leadless quantum-dot cellular automata cell, Appl. Phys. Lett. 77(5), 738-740 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    A.O. Orlov, I. Amlani, R.K. Kummamuru, R. Ramasubramaniam, G. Toth, C.S. Lent, G.H. Bernstein, and G.L. Snider, Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata, Appl. Phys. Lett. 77(2), 295-297 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    T. Junno, S.B. Carlsson, H.Q. Xu, L. Samuelson, A.O. Orlov, and G.L. Snider, Single-electron tunneling effects in a metallic double dot device, Appl. Phys. Lett. 80(4), 667-669 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    R.K. Kummamuru, J. Timler, G. Toth, C.S. Lent, R. Ramasubramaniam, A.O. Orlov, G.H. Bernstein, and G.L. Snider, Power gain in a quantum-dot cellular automata latch, Appl. Phys. Lett. 81(7), 1332-1334 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    C. Lent, Bypassing the transistor paradigm, Science 228(5471), 1597-1598 (2000).CrossRefGoogle Scholar
  36. 36.
    O.G. Wiest and S. Braun-Sand, Quantum dot cellular automata: Encoding information in molecules, Abstr. Pap. Am. Chem. Soc. 219, 112-COMP (Part 1) (2000).Google Scholar
  37. 37.
    C.J. Russo and C.S. Lent, Quantum mechanical calculation of QCA molecule properties, in Device Research Conference (2001) (Conference Digest Cat. No.01TH8561, 165).Google Scholar
  38. 38.
    M. Lieberman, Z.Y Li, F. Peiris, and G.S. Snider, Molecular quantum-dot cellular automata: Surface attachment and STM spectroscopy, Abstr. Pap. Am. Chem. Soc. 221, 10-COLL (Parti) (2001).Google Scholar
  39. 39.
    M. Lieberman, Y.L. Wang, and S. Chellamma, Toward molecular implementations of quantum-dot cellular automata, Abstr. Pap. Am. Chem. Soc. 221, 271-COLL (Part 1) (2001).Google Scholar
  40. 40.
    Q.L. Hang, Y.L. Wang, M. Lieberman, and G.H. Bernstein, Molecular patterning through high-resolution polymethylmethacrylate masks, Appl. Phys. Lett. 80(22), 4220-4222 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    M. Lieberman, S. Chellamma, B. Varughese, YL. Wang, C. Lent, G.H. Bernstein, G. Snider, and F.C. Peiris, Quantum-dot cellular automata at a molecular scale, Ann. NY Acad. Sci. 960, 225-239 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    R.W. Keyes and R. Landauer, Minimal energy dissipation in logic, IBM J. Res. Dev. 14, 152 (1970).CrossRefGoogle Scholar
  43. 43.
    T.A. Fulton and G.H. Dolan, Observation of single-electron charging effects in small tunnel junctions, Phys. Rev. Lett. 59, 109 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    L.P. Kouwenhoven, CM. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, and N. Wingreen, Electron transport in quantum dots, in Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport (1997) (Kluwer Series E345).Google Scholar
  45. 45.
    Yu, A. Pashkin, Y Nakamura, and J.S. Tsai, Room-temperature Al single-electron transistor made by electron-beam lithography, Appl. Phys. Lett. 76, 2256 (2000).ADSCrossRefGoogle Scholar
  46. 46.
    D.V. Averin and K.K. Likharev, Single electronics, in Mesoscopic Phenomena in Solids (ed. B.L. Altshuler, PA. Lee, and R.A. Webb), Elsevier (1991).Google Scholar
  47. 47.
    P. Lafarge, H. Pothier, E.R. Williams, D. Esteve, C. Urbina, and M.H. Devoret, Z. Phys. B 85, 327(1991).ADSCrossRefGoogle Scholar
  48. 48.
    K.K. Likharev and A.N. Korotkov, Single-electron parametron: Reversible computation in a discrete state system, Science 273, 763 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    A. Korotkov and K.K. Likharev, Single-electron-parametron-based logic devices, J. Appl. Phys. 84, 6114(1998).ADSCrossRefGoogle Scholar
  50. 50.
    D.V. Averin and A.A. Odintsov, Macroscopic quantum tunneling of the electric charge in small tunnel junctions, Phys. Lett. A 140, 251 (1989).ADSCrossRefGoogle Scholar
  51. 51.
    Z. Li and M. Lieberman, Axial reactivity of soluble silicon (IV) phthalocyanines, Inorg. Chem. 40, 932-939 (2001).CrossRefGoogle Scholar
  52. 52.
    K.D. Demadis, CM. Hartshorn, and T.J. Meyer, The localized-to-delocalized transition in mixed-valence chemistry, Chem. Rev. 101, 2655-2685 (2001).CrossRefGoogle Scholar
  53. 53.
    A. Aviram, Molecules for memory, logic, and amplification, J. Am. Chem. Soc. 110(17), 5687-5692(1988).CrossRefGoogle Scholar
  54. 54.
    N.S. Hush, A.T. Wong, G.B. Bacskay, and J.R. Reimers, Electron and energy-transfer through bridged systems.6. Molecular switches—the critical-field in electric-field activated bistable molecules, J. Am. Chem. Soc. 112(11), 4192-4197 (1990).CrossRefGoogle Scholar
  55. 55.
    Gaussian 98, Revision A. 11, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y Ayala, Q. Cui, K. Morokuma, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, DJ. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Chal-lacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, Gaussian, Inc., Pittsburgh, PA, (2001).Google Scholar
  56. 56.
    For a charged molecule the dipole moment depends on the choice of coordinate origin. We take the origin at the midpoint of the line segment connecting the top allyl dots. We take the direction of the dipole moment to be from negative to positive charge, following A. J. Stone, The Theory of Intermolecular Forces. Oxford University Press, Oxford (1996). For the calculation of quadrupole moments below we take the coordinate origin at the center of the square formed by the 4 upper dots and calculate Qxy, the moment in the plane of the dots.Google Scholar
  57. 57.
    M.T. Niemier, M.J. Kontz, and P.M. Kogge, A design of and design tools for a novel quantum dot based microprocessor, Proceedings 2000. Design Automation Conference. IEEE Cat. No. 00CH37106. 2000: 227-32.Google Scholar
  58. 58.
    M.T. Niemier and P.M. Kogge, Logic in wire: Using quantum dots to implement a microprocessor, in International Conference on Electronics, Circuits, and Systems (ICECS’99) Cyprus, (1999).Google Scholar
  59. 59.
    M.T. Niemier and P.M. Kogge, Logic in wire: Using quantum dots to implement really dense processing logic, in Proceedings of the Third Petaflops Workshop (1999) (Associated with Frontiers of Massively Parallel Processing, Annapolis, MD).Google Scholar
  60. 60.
    M.T. Niemier and P.M. Kogge, Problems in designing with QCAs: layout=timing, Int. J. Circuit Theory Appl. 29(1), 49-62 (2001).CrossRefGoogle Scholar
  61. 61.
    C.A. Mead and L. Conway, An Introduction to VLSI Systems. Addison Wesley, (1980).Google Scholar
  62. 62.
    A. Gin, S. Williams, H.Y. Meng, and P.D. Tougaw, Hierarchical design of quantum-dot cellular automata devices, J. Appl. Phys. 85(7), 3713-3720 (1999).ADSCrossRefGoogle Scholar
  63. 63.
    A. Gin, P.D. Tougaw, and S. Williams, An alternative geometry for quantum-dot cellular automata, J. Appl. Phys. 85(12), 8281-8286 (1999).ADSCrossRefGoogle Scholar
  64. 64.
    J.R. Pasky, L. Henry, and P.D. Tougaw, Regular arrays of quantum-dot cellular automata macrocells, J. Appl. Phys. 87(12), 8604-8609 (2000).ADSCrossRefGoogle Scholar
  65. 65.
    C.S. Lent, P.D. Tougaw, Y. Brazhnik, W.W. Weng, W. Porod, R.W. Liu, and YF Huang, Quantum cellular neural networks, Superlatt. Microstruct. 20(4), 473-478 (1996).CrossRefGoogle Scholar
  66. 66.
    A.I. Csurgay, W. Porod, and C.S. Lent, Signal processing with near-neighbor-coupled time-varying quantum-dot arrays, IEEE Trans. Circuits Syst. IFundam. Theory Appl. 47(8), 1212-1223(2000).CrossRefGoogle Scholar
  67. 67.
    A. Csurgay and W. Porod, Equivalent circuit representation of arrays composed of Coulomb-coupled nanoscale devices: Modelling, simulation and readability, Int. J. Circuit Theory Appl. 29(1), 3-35(2001).CrossRefGoogle Scholar
  68. 68.
    J.L. Cardenas-Barrera, K.N. Platoniotis, and A.N. Venetsanopoulos, QCA implementation of a multichannel filter for image processing, Math. Prohl. Eng. 8(1), 87-99 (2002).CrossRefzbMATHGoogle Scholar
  69. 69.
    M. Helsingius, P. Kuosmanen, and J. Astola, Quantum-dot cells and their suitability for nonlinear signal processing, in Proceedings of the IEEE EURASIP Workshop on Nonlinear Signal and Image Processing NSIP’99, 659-663 vol. 2 (1999).Google Scholar
  70. 70.
    M.T. Niemier, A.F. Rodrigues, and P.M. Kogge, A potentially implementable FPGA for quantum dot cellular automata, in 1st Workshop on Non-Silicon Computation (NSC-1) (Held in Conjunction with 8th International Symposium on High Performance Computer Architecture (HPCA-8), Boston, MS) (February 3, 2002).Google Scholar
  71. 71.
    S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch, and P.M. Kogge, Memory in motion: A study of storage structures in QCA, in 1st Workshop on Non-Silicon Computation (NSC-1) (Held in Conjunction with 8th International Symposium on High Performance Computer Architecture (HPCA-8), Boston, MS) (February 3, 2002).Google Scholar
  72. 72.
    A. Fijany and B.N. Toomarian, New design for quantum dots cellular automata to obtain fault tolerant logic gates, J. Nanopart. Res. 3(1), 27-37 (2001).CrossRefGoogle Scholar
  73. 73.
    R.P. Cowburn and M.E. Welland, Room temperature magnetic cellular automata, Science 287, 1466(2000).ADSCrossRefGoogle Scholar
  74. 74.
    D.A. Allwood, Gang Xiong, M.D. Cooke, C.C. Faulkner, D. Atkinson, N. Vernier, and R.P. Cowburn, Sub micrometer ferromagnetic NOT gate and shift register, Science 296, 2003-2006 (2002).ADSCrossRefGoogle Scholar
  75. 75.
    A. Aharoni, Introduction to the Theory of Ferromagnetism. Oxford University Press, Oxford (2000).Google Scholar
  76. 76.
    T.M. Crawford, P. Kabos, and T.J. Silva, Coherent control of precessional dynamics in thin film permalloy, Appl. Phys. Lett. 76, 15 (2000).CrossRefGoogle Scholar
  77. 77.
    G.A. Prinz, Magnetoelectronics, Science 282, 1160 (1998) and references therein.CrossRefGoogle Scholar
  78. 78.
    J.-G. Zhu, Y. Zheng, and G. A. Prinz, Ultrahigh density vertical magnetoresistive random access memory, J. Appl. Phys. 87(9) (2000).Google Scholar
  79. 79.
    H. Koo, M. Dryer, V.V. Metlushko, and R.D. Gomez, Systematic investigation of the magnetic interaction of small permalloy particles, IEEE Trans. Magn. 37, 2049 (2001).ADSCrossRefGoogle Scholar
  80. 80.
    G. Csaba and W. Porod, Simulation of field-coupled architectures based on magnetic dot arrays, J Compitt. Electron. 1, 87-91 (2002).CrossRefGoogle Scholar
  81. 81.
    M.J. Donahue and D.G. Porter, Interagency Report NISTIR 6376,OOMMF User’s Guide, Version 1.0. http://math.nist.gov/oommf/
  82. 82.
    G. Csaba, A. Imre, G.H. Bernstein, V Metlushko, and W. Porod, Nanocomputing by field-coupled nanomagnets, IEEE Trans. Nanotechnol. 1, 209-219 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • C. S. Lent
    • 1
  • G. L. Snider
    • 1
  • G. Bernstein
    • 1
  • W. Porod
    • 1
  • A. Orlov
    • 1
  • M. Lieberman
    • 2
  • T. Fehlner
    • 2
  • M. Niemier
    • 3
  • P. Kogge
    • 3
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  3. 3.Department of Computer Science and EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations