Skip to main content

Interactions, Spins and the Kondo Effect in Quantum-Dot Systems

  • Chapter
Electron Transport in Quantum Dots

Abstract

Semiconductor quantum dots are often referred to as artificial atoms because the electronic energy spectrum is determined by the effects of quantum mechanical confinement and interactions [1]. Zero-dimensional (0D) energy levels are well defined in a sufficiently small dot that the size of the confining potential is comparable to the Fermi wavelength of electrons. On the other hand, the interaction effect is characterized by a Coulombic energy (single electron charging energy) cost for trapping an additional electron in a dot. The charging energy is simply given by e 2 /C (C, total capacitance) when the dot is large enough for containing many electrons. This gives rise to so-called “Coulomb blockade” and is explained using an orthodox theory [2]. However, when the dot is small and contains just a few electrons, the interaction effect as well as the quantum mechanical effect depends strongly on the electronic configuration, and cannot be characterized using a capacitance model [2,3]. Adding an electron to such a small quantum dot costs a certain energy and simultaneously changes the electronic configuration to minimize the total energy, i.e. sum of the quantum mechanical energy and interaction energy. The cost for the quantum mechanical energy is associated with the orbital energy. Each orbital state is spin degenerate, so antiparallel spin filling of the same orbital state is generally favored. However, this is not the case when we consider the cost of interaction energy. Exchange energy is gained when electrons are added with parallel spins as compared to antiparallel spins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Reed, Sci. Am. 268, 118 (1993); M.A. Kastner, Phys. Today 46, 24(1993);

    Article  ADS  Google Scholar 

  2. R.C. Ashoori, Nature 379, 413 (1996).

    Article  ADS  Google Scholar 

  3. For reviews, Mesoscopic Phenomena in Solids (eds. B.L. Altshuler, P.A. Lee, and R.A. Webb) Elsevier (1991);

    Google Scholar 

  4. U. Meirav and E.B. Foxman, Semicond. Sci. Technol. 11, 255 (1996);

    Article  ADS  Google Scholar 

  5. Proceedings of the NATO Advance Study Institute on Mesoscopic Electron Transport (eds. L.L. Sohn, L.P. Kouwenhoven, and G. Schoen) Kluwer Series E345 (1997).

    Google Scholar 

  6. S. Tarucha, D.G. Austing, S. Sasaki, Y. Tokura, W. van der Wiel, and L.P. Kouwenhoven, Appl. Phys. A 71, 367 (2000).

    Article  ADS  Google Scholar 

  7. For reviews, S. Tarucha, D.G. Austing, T. Fujisawa, and L.P. Kouwenhoven, in Optical and Electronic Process of Nano-Matters (ed. M. Ohtsu), Kluwer Academic Publishers, 57-93 (2001); See P.A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990) for magic number states, and A.A. Koulakov and B.I. Shklovskii, Phil. Mag. B 77, 1235 (1998) for Wigner molecules.

    Chapter  Google Scholar 

  8. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613(1996).

    Article  ADS  Google Scholar 

  9. D.G. Austing, S. Sasaki, S. Tarucha, S.M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B 60, 11514 (1999); S.M. Reimann, M. Koskinen, J. Kolehmainen, M. Manninen, D.G. Austing, and S. Tarucha, Eur. J. Phys. D 9, 105 (1999).

    Article  Google Scholar 

  10. T. Fujisawa, Y. Tokura, and Y Hirayama, Phys. Rev. B 63, 081304 (2001); T. Fujisawa, D.G. Austing, Y Tokura, Y. Hirayama, and S. Tarucha, Phys. Rev. Lett. 88, 236802 (2002).

    Article  Google Scholar 

  11. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    Article  ADS  Google Scholar 

  12. W.J. de Haas, J.H. de Boer, and G.J. van den Berg, Physica 1, 1115 (1934).

    Article  ADS  Google Scholar 

  13. See for reviews, L.P Kouwenhoven and L.I. Glazman, Phys. World 14, 33 (2001).

    Google Scholar 

  14. D.G. Austing, T. Honda, and S. Tarucha, Semicond. Sci Technol. 11, 388 (1996).

    Article  ADS  Google Scholar 

  15. M. Alonso and E.J. Finn, Quantum and Statistical Physics. Addison-Wesley (1968).

    Google Scholar 

  16. V. Fock, Z. Phys. 47, 446 (1928); C.G. Darwin, Proc. Camb. Phil. Soc. 27, 86 (1930).

    Article  ADS  MATH  Google Scholar 

  17. M. Ciorga, A. Wensauer, M. Pioro-Ladriere, M. Korkusinski, J. Kyriakidis, A.S. Sachrajda, and P. Hawrylak, Phys. Rev. Lett. 88, 256804 (2002).

    Article  ADS  Google Scholar 

  18. K. Ono, D.G. Austing, Y. Tokura, and S. Tarucha, Physica B, 314 450 (2002).

    Article  ADS  Google Scholar 

  19. S. Tarucha, D.G. Austing, Y. Tokura, W.G. van der Wiel, and L.P. Kowenhoven, Phys. Rev. Lett. 84, 2485 (2000).

    Article  ADS  Google Scholar 

  20. L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, and S. Tarucha, Science 278, 1788 (1997).

    Article  ADS  Google Scholar 

  21. P. Matagne, J.P. Leburton, D.G. Austing, and S. Tarucha, Phys. Rev. B 65,085325 (2002).

    Article  Google Scholar 

  22. There are various calculations consistent with our experiment; exact calculation for N < 7 by A. Wojs and P. Hawrylak, Phys. Rev. B 53, 10841 (1996) and also by M. Eto, Jpn. J. Appl. Phys. 36, 3924 (1997), Hartree—Fock calculations for N > 8 by A. Natori et al., Jpn. J. Appl. Phys. 36, 3960 (1997), H. Tamura,Physica B 249-251, 210 (1998) and M. Rontani et al., Phys. Rev. B 59, 10165 (1999), and spin density-functional theory at B = 0T by In-Ho Lee et al., Phys. Rev. B 57, 9035 (1998), and M. Koskinen, M. Manninen, and S.M. Reimann, Phys. Rev. Lett. 79, 1817 (1997), and also at non-zero B by O. Steffen, U. Rossler, and M. Suhrke, Europhys. Lett. 42, 529 (1998).

    Article  Google Scholar 

  23. For single dot, D. Weimann, H. Hausler, and B. Kramer, Phys. Rev. Lett. 74, 984 (1995); Y Tanaka and H. Akera, Phys. Rev. B 53, 3091 (1996).

    Article  ADS  Google Scholar 

  24. For double dot, H. Imamura, H. Aoki, and P.A. Maksym, Phys. Rev. B 57, R4259 (1998); Y. Tokura, D.G. Austing, and S. Tarucha, J. Phys.: Condens. Matter 11, 6023 (1999).

    Article  ADS  Google Scholar 

  25. L.P. Rokhinson, L.J. Guo, S.Y. Chou, and D.C. Tsui, Phys. Rev. B 63, 035321 (2001); A.H. Huettel, H. Qin, A.W. Holleithner, R.H. Blick, K. Neumaier, D. Weimann, K. Eberl, and J.P. Kotthaus, cond-mat/0109104.

    Article  ADS  Google Scholar 

  26. K. Ono, D.G. Austing, Y. Tokura, and S. Tarucha, Science 297, 1313 (2002).

    Article  ADS  Google Scholar 

  27. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61, R16315 (2000).

    Article  ADS  Google Scholar 

  28. D.G. Austing, T. Honda, K. Muraki, Y. Tokura, and S. Tarucha, Physica B 249-251, 206 (1998).

    Article  Google Scholar 

  29. S. Anha, D.G. Austing, Y. Tokura, K. Muraki, K. Ono, and S. Tarucha, Solid State Commun. 119, 183(2001).

    Article  ADS  Google Scholar 

  30. M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S. Tarucha, and D.G. Austing, Phys. Rev. Lett. 87, 066801 (2001).

    Article  ADS  Google Scholar 

  31. D.V. Averin and Y.V. Nazarov, Single Charge Tunneling, in Coulomb Blockade Phenomena in Nanostructures (eds. by H. Grabert and M.H. Devoret), Plenum Press and NATO Scientific Affairs Division, 217-247 (1992).

    Google Scholar 

  32. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin 1957.

    Book  MATH  Google Scholar 

  33. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature 419, 278 (2002).

    Article  ADS  Google Scholar 

  34. Y. Tokura, S. Sasaki, D.G. Austing, and S. Tarucha, Physica B 298, 260 (2001).

    Article  ADS  Google Scholar 

  35. T. Fujisawa, T.H. Oosterkamp, W.G. van der Wiel, B.W. Broer, R. Aguado, S. Tarucha, and L.P. Kouwenhoven, Science 282, 932 (1998).

    Article  ADS  Google Scholar 

  36. H. Benisty, C.M. Sotomayer-Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).

    Article  Google Scholar 

  37. U. Bockelmann, P. Roussignol, A. Filoramo, W. Heller, G. Abstreiter, K. Brunner, G. Bohm, and G. Weimann, Phys. Rev. Lett. 76, 3622 (1996).

    Article  ADS  Google Scholar 

  38. K. Seeger, Semiconductor Physics: An Introduction. Springer-Verlag, Berlin, 153-213 (1985).

    Google Scholar 

  39. U. Bockelmann, Phys. Rev. B 50, 17271 (1994).

    Article  ADS  Google Scholar 

  40. M. Eto, Jpn. J. Appl. Phys. part 1 40, 1929 (2001); E.V. Sukhorukov, G. Burkard, and D. Loss, Phys. Rev. B 63, 125315 (2001).

    Article  ADS  Google Scholar 

  41. S. De Franceschi, S. Sasaki, J.M. Elzerman, W.G. van der Wiel, S. Tarucha, and L.P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001).

    Article  ADS  Google Scholar 

  42. A.V. Khaetskii and Y.V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Article  ADS  Google Scholar 

  43. W.P. Halperin, Rev. Mod. Phys. 58, 533 (1986).

    Article  ADS  Google Scholar 

  44. Y.A. Bychkov and E.I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  45. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Article  ADS  Google Scholar 

  46. P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).

    Article  ADS  Google Scholar 

  47. M. Seek, M. Potemski, and P. Wyder, Phys. Rev. B 56, 7422 (1997).

    Article  ADS  Google Scholar 

  48. J.A. Gupta, R. Knobel, N. Samarth, and D.D. Awschalom, Science 292, 2458 (2001).

    Article  ADS  Google Scholar 

  49. K.V. Kavokin, Phys. Rev. B 64, 075305 (2001).

    Article  ADS  Google Scholar 

  50. P.W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  51. L.I. Glazman and M.E. Raikh, JETP Lett. 47, 452 (1988); T.K. Ng and P.A. Lee, Phys. Rev. Lett. 61,1768(1988).

    ADS  Google Scholar 

  52. F.D.M. Haldane, Phys. Rev. Lett. 40, 416 (1978).

    Article  ADS  Google Scholar 

  53. A. Kawabata, J. Phys. Soc. Jpn. 60, 3222 (1991).

    Article  ADS  Google Scholar 

  54. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998); S.M. Cronenwett, T.H. Oosterkamp, and L.P. Kouwenhoven, Science 281, 540 (1998); J. Schmid, J. Weis, K. Eberl, and K. von Klitzing, Physica B bf256-258, 182 (1998).

    Article  ADS  Google Scholar 

  55. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, and L.P. Kouwenhoven, Science 289, 2105 (2000).

    Article  ADS  Google Scholar 

  56. D. Goldhaber-Gordon, J. Gores, M.A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998); T.A. Costi, A.C. Hewson, and V. Zlatic, J. Phys. Condens. Matter 6, 2519(1994).

    Article  ADS  Google Scholar 

  57. S. Sasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel, M. Eto, S. Tarucha, and L.P. Kouwenhoven, Nature 405, 764 (2000).

    Article  ADS  Google Scholar 

  58. W.G. van der Wiel, T.H. Oosterkamp, J.W. Janssen, L.P. Kouwenhoven, D.G. Austing, T. Honda, and S. Tarucha, Physica B 256-258, 173 (1998).

    Article  Google Scholar 

  59. D.C. Mattis, Phys. Rev. Lett. 19, 1478 (1967); P. Nozières and A. Blandin, J. Physique 41, 193(1980).

    Article  ADS  Google Scholar 

  60. Y. Wan, P. Phillips, and Q. Li, Phys. Rev. B 51, 14782 (1995); W. Izumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. Jpn. 67, 2444 (1998).

    Article  ADS  Google Scholar 

  61. M. Eto and Y.V. Nazarov, Phys. Rev. Lett. 85, 1306 (2000); M. Eto and Y.V. Nazarov, Phys. Rev. B 64, 085322 (2001); M. Eto and Y.V. Nazarov, Phys. Rev. B 66, 153319 (2002).

    Article  ADS  Google Scholar 

  62. M. Pustilnik, Y Avishai, and K. Kikoin, Phys. Rev. Lett. 84, 1756 (2000); D. Giuliano and A. Tagliacozzo, Phys. Rev. Lett. 84, 4677 (2000).

    Article  ADS  Google Scholar 

  63. J. Nygård, D.H. Cobden, and P.E. Lindelof, Nature 408, 342 (2000).

    Article  ADS  Google Scholar 

  64. W. Hofstetter and H. Schoeller, Phys. Rev. Lett. 88, 016803 (2002).

    Article  ADS  Google Scholar 

  65. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, J. Motohisa, F. Nakajima, and T. Fukui, Phys. Rev. Lett. 88, 126803 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tarucha, S., Ono, K., Fujisawa, T., van DerWiel, W.G., Kouwenhoven, L.P. (2003). Interactions, Spins and the Kondo Effect in Quantum-Dot Systems. In: Bird, J.P. (eds) Electron Transport in Quantum Dots. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0437-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0437-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7459-2

  • Online ISBN: 978-1-4615-0437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics