Skip to main content

Abstract

In an issue of the proceedings of the Bologna Academy and Institute of Sciences and Arts dated 27 March 1791, Luigi Galvani published an article that was to be a milestone in the world of physics and physiology. He began this paper, which was entitled De viribus electricitatis in motu musculari Commentarius, with the following description:

  • I dissected and prepared a frog and placed it on a table, on which was an electrical machine, widely removed from its conductor and separated by no brief interval. When by chance one of those who were assisting me gently touched the point of a scalpel to the medial crural nerves of this frog, immediately all the muscle of the limbs seemed to be so contracted that they appeared to have fallen into violent tonic convulsions. But another of the assistants, who was on hand when I did electrical experiments, seemed to observe that the same thing occurred whenever a spark was discharged from the conductor of the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Arthurs, O.J., Boniface, S. (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosci. 25:27–31.

    Article  CAS  Google Scholar 

  • Basmajian, J.V., and DeLuca, C. (1985) Muscles Alive and their Functions Revealed by Electromyography. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Benedek, G.B., Villars, F.M.H., (2000) Physics With Illustrative Examples from Medicine and Biology: Electricity and Magnetism. Springer Verlag (Biological Physics Series), New York.

    Book  Google Scholar 

  • Brown, K.T., Flaming, D.G. (1986) Advanced Micropipette Techniques for Cell Physiology. John Wiley & Sons, Chichester.

    Google Scholar 

  • Brown, W.F. (1984) The Physiological and Technical Basis of Electromyography. Butterworth, Boston.

    Google Scholar 

  • Cohen, M.S., Bookheimer, S.Y. (1994) Localization of brain function using magnetic resonance imaging. Trends in Neurosci. 17:268–277.

    Article  CAS  Google Scholar 

  • Conn, P.M. (1991) Electrophysiology and Microinjection. Academic Press, San Diego.

    Google Scholar 

  • Friedli, W.G., Meyer, M. (1984) Strength-duration curve: a measure for assessing sensory deficit in peripheral neuropathy. J. Neurol Neurosurg. Psychiatry 47:184–189.

    Article  PubMed  CAS  Google Scholar 

  • Gorman P.H. (2000) An update on functional electrical stimulation after spinal cord injury. Neurorehabil Neural Repair 14:251–63.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., and Katz, B. (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116:424–448.

    CAS  Google Scholar 

  • Jansen, B.H. (1991) Quantitative analysis of electroencephalograms: Is there chaos in the future? Int. J. Biomed. Comput. 27:95–123.

    Article  PubMed  CAS  Google Scholar 

  • Loeb G.E., Peck R.A., Moore W.H., Hood K. (2001) BION system for distributed neural prosthetic interfaces. Med Eng Phys. 23:9–18.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., and Sakmann, B. (1992) The patch clamp technique. Sci. Am. 266(3):44–51.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone, A., Bartres-Faz, D., Keenan, J.P. (1999) Transcranial magnetic stimulation: studying the brain-behavior relationship by induction of ‘virtual lesions.’ Phil. Trans., R. Soc. Lond. B 354:1229–1238.

    Article  CAS  Google Scholar 

  • Somjen, G. (1972) Sensory Coding in Mammalian Nervous Systems. Appleton-Century-Crofts, NY.

    Google Scholar 

  • Stern, E., Silbersweig, D.A. (2001) Advances in functional neuroimaging methodology for the study of brain systems underlying human neuropsychological function and dysfunction. J. Clin. Exp. Neuropsychol. 23:3–18.

    Article  PubMed  CAS  Google Scholar 

Additional Reading

  • Adrian, E.D., and Zotterman, Y. (1926) The impulses produced by sensory nerve endings. J. Physiol. 61:151–171.

    PubMed  CAS  Google Scholar 

  • Berger, H. (1929) Über das Elektrenkephalogramm des Menschen. Arch. Psychiat. 27:179–183.

    Google Scholar 

  • Blair, H.A. (1932) On the intensity-time relations for stimulation by electric currents. J. Gen. Physiol. 15:709–729.

    Article  PubMed  CAS  Google Scholar 

  • DuBois-Reymond, E. (1848) Untersuchungen über thierische Elektricität, vol. 1. Reimer, Berlin.

    Google Scholar 

  • Erlanger, and J. Gasser, H.S. (1924) The compound nature of the action current of nerve as disclosed by the cathode ray oscillograph. Am. J. Physiol. 70: 624–666.

    Google Scholar 

  • Erlanger, J., and Gasser, H. (1938) Electrical Signs of Nervous Activity. University of Pennsylvania Press, Philadelphia.

    Google Scholar 

  • Fritsch, G., and Hitzig, E. (1870) Über die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37:300–332.

    Google Scholar 

  • Gasser, H.S., and Erlanger, J. (1922) A study of the action currents of nerve with a cathode ray oscillograph. Am. J. Physiol. 62:496–524.

    Google Scholar 

  • Green, R.M. (1953) A Translation of Luigi Galvani’s De viribus electricitaitis in motu musculari Commentarius. Elizabeth Licht, Publisher, Cambridge, MA.

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflüger’s Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Hodgkin, A.L., and Huxley, A.F. (1939) Action potentials recorded from inside a nerve fibre. Nature (London) 144:710–711.

    Article  Google Scholar 

  • Kondo, H. (1953) Michael Faraday. Sci. Am. 189:91–98.

    Article  Google Scholar 

  • Lapique, L. (1926) L’excitabilitie en fonction du temps: La chronaxis, sa signification et sa mesure, University of France Press, Paris.

    Google Scholar 

  • Ling, G., and Girard, R.W. (1949) The normal membrane potential of frog sartorius fibers. J. Cell. Comp. Physiol. 34:383–396.

    Article  CAS  Google Scholar 

  • Pflüger, E.F.W. (1859) Untersuchungen über die Physiologie des Electrotonus. A. Hirshwald, Berlin.

    Google Scholar 

  • Stevens, C.F., (1995) Six Core Theories of Modern Physics, M.I.T. Press, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Partridge, L.D., Partridge, L.D. (2003). Measurement of Neural Function. In: Nervous System Actions and Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0425-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0425-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5070-5

  • Online ISBN: 978-1-4615-0425-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics