Skip to main content

Effects of Sequential Ischemia-reperfusion Cycles on Cyclic Nucleotide Phosphodiesterase Activity in Pig Heart

  • Chapter
  • 98 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 6))

Summary

Inhibition of cyclic nucleotide phosphodiesterase (PDE) activities is one of the prime causes of cAMP accumulation in ischemic myocardium [TP et al. 1994. JMCC 26: 486]. Cyclic nucleotides are among several mediators that may afford protection during myocardial ischemia. The purpose of the present investigation was to examine whether, and if so, how, successive ischemia-reperfusion cycles affect PDE activities and cAMP levels of pig myocardium. Regional myocardial ischemia was produced by occluding the anterior descending coronary artery half-way from its origin in anesthetised open-chest pigs. Reperfusion was effected by releasing the snare. Pig hearts were subjected to either 5, 10 or 15 min ischemia followed by variable durations (5, 15, 30, 120min) reperfusion and a subsequent ischemia-reperfusion of 15-15 min or 90-30 min. Serial drill biopsies were obtained from left ventricular myocardium during and following ischemia and were immediately frozen in liquid nitrogen. Specimens were analyzed for PDE activity and cAMP content. Severe reduction of perfusion flow caused progressive inhibition of myocardial PDE activities, with approx. 15, 35, 56 and 82% inhibition after 5, 10, 15 and 30 min ischemia, resp. Inhibition of PDEs was readily reversed by reperfusion. With short ischemic periods (up to 15 min tested), recovery was complete (100%) within 5 min. During a subsequent ischemia, inhibition of PDEs was attenuated. The extent of attenuation depended on both, the duration of the antecedent ischemia and the duration of reperfusion. The longer the antecedent ischemia lasted (5, 10 and 15min tested), the less inhibition occurred during a subsequent ischemia. The optimal durations of reperfusion were 15 or 30 min. Short (5 min) and long (120 min) reperfusions were less effective. Of the protocols tested, a single ischemia-reperfusion cycle of 15–30 min duration reduced the inhibition of PDE activities during a subsequent ischemia maximally (approx. 50% compared to control hearts). There was an inverse relationship between PDE activity and cAMP content. Accumulation of cAMP was marked during the first ischemia (biphasic increase with maxima at 5 and 30 min) and was blunted during the following ischemia. In hearts subjected to an antecedent 15–30 min ischemia-reperfusion cycle, the increase of cAMP during a subsequent ischemia was barely significant. PDE activities and cAMP content of non-ischemic myocardium remained constant throughout the occlusion-reperfusion cycles. The present findings show that temporary reductions of blood flow inhibited PDE activities of pig myocardium differentially. Whereas PDEs were strongly inhibited during the first ischemia, inhibition was attenuated during subsequent ischemic episodes, with reciprocal effects on cAMP levels. These findings support, but do not prove, a role of PDEs in myocardial protection during ischemia, with possibly dual effects. First, cAMP accumulating during the first ischemia may act as a signal and memory effect alike. Secondly, a preceding ischemia-reperfusion cycle may limit injury during a subsequent ischemia by preserving PDE activities, attenuating increase of cAMP and impeding cyclic nucleotide mediated signal transduction. This may mitigate stimulation of the myocardium at risk, like cardiac denervation or beta-adrenoceptor blocking agents. However, a preceding ischemia-reperfusion cycle may be more effective, as it attenuates the two main causes of cAMP accumulation, activation of adenylyl cyclase [TP et al. 1996. JMCC 28: 293] and inhibition of PDEs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry CE, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  2. Yellon DM, Baxter GF. 1995. A 2nd window of protection or delayed preconditioning phenomenon—future horizons for myocardial protection. J Mol Cell Cardiol 27:1023–1034.

    Article  PubMed  CAS  Google Scholar 

  3. Podzuweit T, Winkelmann A, Müller A, Vogt A. 1995. Protective mechanisms 1. IP modulates catecholamine release. J Mol Cell Cardiol 27:A161 (abstr. Tul42).

    Google Scholar 

  4. Podzuweit T, Thomas S, Binz K, Müller A. 1995. Protective mechanisms 2. IP attenuates ischaemia induced PDE inhibition. J Mol Cell Cardiol 27:A161 (abstr. Tul43).

    Google Scholar 

  5. Lochner A, Genade S, Tromp E, Opie L, Moolman J, Thomas S, Podzuweit T. 1998. Role of cyclic nucleotide phosphodiesterases in ischemic preconditioning. Mol Cell Biochem 186:169–175.

    Article  PubMed  CAS  Google Scholar 

  6. Sandhu R, Thomas U, Diaz RJ, Wilson GJ. 1996. Effect of ischemic preconditioning of the myocardium on cAMP. Circ Res 78:137–147.

    Article  PubMed  CAS  Google Scholar 

  7. Podzuweit T, Dalby AJ, Cherry GW, Opie LH. 1978. Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation: Relation to ventricular fibrillation. J Mol Cell Cardiol 10:81–94.

    Article  PubMed  CAS  Google Scholar 

  8. Wollenberger A, Krause E-G, Heier G. 1969. Stimulation of 3′,5′-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem Biophys Res Commun 36:664–670.

    Article  PubMed  CAS  Google Scholar 

  9. Podzuweit T, Binz K-H, Nennstiel P, Flaig W. 1989. The anti-arrhythmic effects of myocardial ischaemia. Relation to reperfusion arrhythmias? Cardiovasc Res 23:81–90.

    Article  PubMed  CAS  Google Scholar 

  10. Flaig WG. 1990. Metabolismus und Arrhythmien während regionaler Ischämie und Reperfusion am Schweineherzen. MD Thesis, Giessen.

    Google Scholar 

  11. Braun W. 1990. Untersuchungen zur Genese des plötzlichen Herztodes durch Kammerflirnmern. MD Thesis, Giessen.

    Google Scholar 

  12. Podzuweit T, Nennstiel P, Bader R, Müller A. 1994. Ischaemia causes inhibition of cyclic nucleotide phosphodiesterases. J Mol Cell Cardiol 26: CXVI (abstr. 486).

    Google Scholar 

  13. Podzuweit T, van Rooyen J, Binz K, Thomas S, Opie LH. 1996. Mechanisms of cAMP increase in the ischaemic rat heart. 1. Activation of adenyl cyclase. J Mol Cell Cardiol 28:A75 (abstr. 293).

    Google Scholar 

  14. Podzuweit T, van Rooyen J, Thomas S, Müller A, Opie LH. 1996. Mechanisms of cAMP increase in the ischaemic rat heart. 2. Inhibition of PDEs. J Mol Cell Cardiol 28:A75 (abstr. 294).

    Google Scholar 

  15. Podzuweit T, van Rooyen J, Thomas S, Müller A, Opie LH. 1996. Mechanisms of cAMP increase in the ischemic rat heart. Adenylyl cyclase vs. phosphodiesterase. Circulation 94:1–727 (abstr. 4250).

    Article  Google Scholar 

  16. Podzuweit T, Thomas S, Binz K, Müller A. 1996. Ischaemia and acidosis cause inhibition of cyclic nucleotide phosphodiesterases in pig heart. J Mol Cell Cardiol 28:A30 (abstr. 115).

    Google Scholar 

  17. Guide for the care and use of laboratory animals. 1985. Ed. EW Grogan, DD Greenhouse and AL Cohen. Washington, DC: National Acadamy Press.

    Google Scholar 

  18. Podzuweit T. 1982. Early arrhythmias resulting from acute myocardial ischaemia; possible role of cyclic AMP. In: Early Arrhytmias Resulting from Myocardial Ischaemia. Mechanisms and prevention by Drugs. Ed. JR Parratt, 171–198. London, Basingstoke: Maximilian Press.

    Google Scholar 

  19. Podzuweit T, Beck H, Müller A, Bader R, Görlach G, Scheid HH. 1991. Absence of xanthine oxidoreductase activity in human myocardium. Cardiovasc Res 25:820–830.

    Article  PubMed  CAS  Google Scholar 

  20. Price B, Pyne NJ, Houslay MD. 1987. Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue. Biochem Pharmacol 36:4047–4054.

    Article  PubMed  CAS  Google Scholar 

  21. Murry CE, Jennings RB, Reimer KA. 1991. New insights into potential mechanisms of ischemic preconditioning. Circulation 84:442–445.

    Article  PubMed  CAS  Google Scholar 

  22. Asimakis GK, Inners-McBride K, Medellin G, Conti VR. 1992. Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat heart. Am J Physiol 263:H887–H894.

    PubMed  CAS  Google Scholar 

  23. Strasser RH, Marquetant R. 1991. Sensitization of the β-adrenergic system in acute myocardial ischaemia by a protein kinase C-dependent mechanism. Eur Heart J 12 (Supp F):48–53.

    Article  PubMed  CAS  Google Scholar 

  24. Newby AC. 1984. Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sei 9:42–44.

    Article  CAS  Google Scholar 

  25. Kukovetz WR, Pöch G. 1970. Cardiostimulatory effects of cyclic 3′,5′-adenosine monophosphate and its acylated derivatives. Naunyn Schmiedebergs Arch Pharmacol 266:236–254.

    Article  PubMed  CAS  Google Scholar 

  26. Corbin JD, Francis SH. 1999. Cyclic GMP phosphodiesterase-5: Target of sildenafd. J Biol Chem 274:13729–13732.

    Article  PubMed  CAS  Google Scholar 

  27. Kleitke B, Wollenberger A. 1978. Accelerated RNA and protein synthesis in mitochondria isolated from unperfused myocardium. Possible involvement of cyclic AMP. J Mol Cell Cardiol 10:827–845.

    Article  PubMed  CAS  Google Scholar 

  28. Bolli R, Dawn B, Tang X-L, Qiu Y, Ping P, Xuan Y-T, Jones WK, Takano H, Guo Y, Zhang J. 1998. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol 93:325–338.

    Article  PubMed  CAS  Google Scholar 

  29. Podzuweit T, Bader R, Nennstiel P, Müller A. 1994. Arrhythmogenic effects of selective inhibition of cyclic nucleotide phosphodiesterase isoenzymes in pig myocardium. In: Myocardial Ischemia and Arrhythmia. Ed. M Zehender, T Meinertz and H Just, 35–44. Darmstadt, New York: Steinkopff, Springer.

    Chapter  Google Scholar 

  30. Podzuweit T, Till T, Binz K, Schmook M, Bader R, Thomas S. 1998. Ischaemic preconditioning does not attenuate ischaemia or reperfusion induced arrhythmias in pigs. J Mol Cell Cardiol 30:A72 (abstr. 277).

    Google Scholar 

  31. Downey JM, Cohen MV. 1997. Signal-transduction in ischemic preconditioning. Adv Exp Med Biol 430:39–55.

    Article  PubMed  CAS  Google Scholar 

  32. Lochner A, Genade S,romp E, Podzuweit T, Moolman JA. 1999. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation 100:958–966.

    Article  PubMed  CAS  Google Scholar 

  33. Moolman JA, Genade S, Tromp E, Lochner A. 1996. No evidence for mediation of ischemic preconditioning by alpha(1)-adrenergic signal transduction pathway or protein-kinase-c in the isolated rat-heart. Cardiovasc Drugs Ther 10:125–136.

    Article  PubMed  CAS  Google Scholar 

  34. Ravingerová T, Barancik M, Song W, Pancza D, Zbynovcova M, Parratt J. 1997. Preconditioning with norepinephrine can induce acute and delayed protection against arrhythmias in isolated rat heart. J Mol Cell Cardiol 29:A11 (abstr. S37).

    Google Scholar 

  35. Baines CP, Wang L, Cohen MV, Downey JM. 1998. Protein-tyrosine kinase is downstream of protein-kinase-c for ischemic preconditionings anti-infarct effect in the rabbit heart. J Mol Cell Cardiol 30:383–392.

    Article  PubMed  CAS  Google Scholar 

  36. Fryer RM, Schultz JEJ, Hsu AK, Gross GJ. 1998. Pretreatment with tyrosine kinase inhibitors partially attenuates ischemic preconditioning in rat hearts. Am J Physiol 44.H2009–H2015.

    Google Scholar 

  37. Imagawa J-I, Baxter GF, Yellon DM. 1997. Genistein, a tyrosine kinase inhibitor, blocks the “second window of protection” 48 h after ischemic preconditioning in the rabbit. J Mol Cell Cardiol 29:1885–1893.

    Article  PubMed  CAS  Google Scholar 

  38. Vahlhaus C, Schulz R, Post H, Rose J, Heusch G. 1998. Prevention of ischemic preconditioning only by combined inhibition of protein-kinase-c and protein-tyrosine kinase in pigs. J Mol Cell Cardiol 30:197–209.

    Article  PubMed  CAS  Google Scholar 

  39. Nichols MR, Morimoto BH. 1999. Tyrosine kinase-independent inhibition of cyclic-AMP phosphodiesterase by genistein and tyrphostin 51. Arch Biochem Biophys 366:224–230.

    Article  PubMed  CAS  Google Scholar 

  40. Goto J, Matsuda Y, Asano K, Kawamoto I, Yasuzawa T, Shirahata K, Sano H, Kase H. 1987. K-254-I (Genistein), a new inhibitor of Ca2+ and calmodulin-dependent cyclic nucleotide phosphodiesterase from streptosporangium vulgare. Agric Biol Chem 51:3003–3009.

    Article  CAS  Google Scholar 

  41. Podzuweit T, Müller A, Opie LH. 1993. Anti-arrhythmic effects of selective inhibition of myocardial phosphodiesterase II. Lancet 341:760.

    Article  PubMed  CAS  Google Scholar 

  42. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML, Mallis GI, Sollano JA, Shannon J, Tandon PK, DeMets DL. 1991. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 325:1468–1475.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Podzuweit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Podzuweit, T., Schmook, M., Binz, K., Thomas, S. (2003). Effects of Sequential Ischemia-reperfusion Cycles on Cyclic Nucleotide Phosphodiesterase Activity in Pig Heart. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics