Skip to main content

Non Ischemic Myocardial Preconditioning by Tachycardia and Exercise

  • Chapter
Myocardial Ischemia and Preconditioning

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 6))

  • 97 Accesses

Summary

Myocardial preconditioning can be induced not only by ischemia but also by physiological stimuli like tachycardia and exercise. We studied in dogs the preconditioning effect of tachycardia. Five brief periods of tachycardia prior to occluding a coronary artery followed by reperfusion, reduced the infarct size by about 50%. This effect was prevented by blockade of adenosine receptors and also of mitochondrial ATP dependent potassium channels. Tachycardia did not produce ischemia and the results were not explained by changes in collateral flow to the ischemic region or in the hemodynamic variables. Since tachycardia produced preconditioning, we studied the possibility that exercise also induces preconditioning. In instrumented dogs the performance of brief periods of exercise on a treadmill a few minutes (early preconditioning) or 24 hours (late preconditioning) prior to a coronary occlusion and reperfusion, reduced the infarct size by about 77% and 46% respectively. Exercise did not produce ischemia and the results could not be explained by changes in collateral flow nor in the hemodynamic variables. This effect may partly explain the decrease in the incidence of coronary acute syndromes by regular exercise in humans. Because tachycardia and the intracoronary administration of Ca2+ induce preconditioning, we studied the changes in calcium transient induced by ischemia and the effect of tachycardia on these changes in myocardial sarcoplasmic reticulum vesicles. Ischemia increased Ca2+ release and decreased Ca2+ uptake by the sarcoplasmic reticulum. These effects were reverted in hearts preconditioned with tachycardia. These results suggest that the protective effect of tachycardia and probably that of exercise may be partly due to a decrease in the cytosolic Ca2+ overload produced by ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reimer KA, Murry CE, Yamasaiva I, Hill ML, Jennings RB. 1986. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251:H1306–H1315.

    PubMed  CAS  Google Scholar 

  2. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. 2001. Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181–98.

    Article  PubMed  CAS  Google Scholar 

  3. Murry CE, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  4. Shiki K, Hearse DJ. 1987. Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol 253:H1470–H1476

    PubMed  CAS  Google Scholar 

  5. Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jaddon AK. 1997. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase: evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 81:1094–1107.

    Article  PubMed  CAS  Google Scholar 

  6. Bolli R. 1996. The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 91:57–63.

    Article  PubMed  CAS  Google Scholar 

  7. Leesar MA, Stoddard M, Ahmed M, Broadbent J, Bolli R. 1997. Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation 95:2500–2507.

    Article  PubMed  CAS  Google Scholar 

  8. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Dabenzio RB, DA’lonzo AJ, Lodge NJ, Smith MA, Grover GJ. 1997. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res 81:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  9. Patel DJ, Purcell HJ, Fox KM. 1999. Cardioprotection by opening of the K (ATP) channel in unstable angina: is this a clinical manifestation of myocardial preconditioning? Results of a randomized study with nicorandil: CESAR 2 investigation. Clinical European studies in angina and revascularization. Eur Heart J 20:51–57.

    Article  PubMed  CAS  Google Scholar 

  10. Domenech RJ, Macho P, Vélez JD, Sánchez G, Liu X, Dhalla N. 1998. Tachycardia preconditions the infarct size in dogs. Role of adenosine and protein kinase C. Circulation 97:786–794.

    Article  PubMed  CAS  Google Scholar 

  11. Koning MMG, Gho BCG, van Klaarwater E, Opstal RLJ, Duncker DJ, Verdouw PD. 1996. Rapid ventricular pacing produces myocardial protection by nonischemic activation of ATP potassium channels. Circulation 93:178–186.

    Article  PubMed  CAS  Google Scholar 

  12. Macho P, Solis E, Schwarze H, Sanchez G, Domenech R. 2001. Mitochondrial ATP-dependent potassium channels mediate non-ischemic preconditioning by tachycardia in dogs. Mol Cell Biochem 216:129–136.

    Article  PubMed  CAS  Google Scholar 

  13. Bankwala Z, Hale SL, Kloner RA. 1994. Alpha-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous cathecolamines mimics ischemic preconditioning. Circulation 90:1023–1028.

    Article  PubMed  CAS  Google Scholar 

  14. Tsuchida A, Liu Y, Liu GS, Cohen, MV, Downey JM. 1994. Alpha1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75:576–585.

    Article  PubMed  CAS  Google Scholar 

  15. Liang BT, Gross GJ. 1999. Direct preconditioning of cardiac myocites via opioid receptors and KATP channels. Circ Res 25;84:1396–1400.

    Google Scholar 

  16. Leesar MA, Stoddard MF; Manchikalapudi S, Bolli R. 1999. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. Am Coll Cardiol 34:639–650.

    Article  CAS  Google Scholar 

  17. Wall TM, Sheehy R, Hartman C. 1994. Role of bradykinin in myocardial preconditioning. The Journal of Pharm and Exp Ther 270:681–689.

    CAS  Google Scholar 

  18. Takano H, Tang XL, Qiu Y, Guo Y, French B, Bolli R. 1998. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 83:73–84.

    Article  PubMed  CAS  Google Scholar 

  19. Domenech R, Macho P, Hermann Schwarze, Sánchez G, Exercise induces early and late myocardial preconditioning in dogs. Cardiovasc Res (in press).

    Google Scholar 

  20. Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. 1999. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 189:1699–1706.

    Article  PubMed  CAS  Google Scholar 

  21. Yamashita N, Baxter GF; Yellon DM. 2001. Exercise directly enhances myocardial tolerance to ischemia-reperfusion injury through a protein kinase C mediated mechanism. Heart 85:331–336.

    Article  PubMed  CAS  Google Scholar 

  22. Mittleman MA, Macclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. 1993. Triggering of acute myocardial infarction by heavy exertion. Protection against triggering by regular exertion. The N Engl J Medicine 329:1677–1683.

    Article  CAS  Google Scholar 

  23. Node K, Kitakaze M, Sato H, Minamino T, Komamura K, Shinozaki Y, Mori H, Hori M. 1997. Role of intracellular Ca2+ in activation of protein kinase C during ischemic preconditioning. Circulation 96:1257–1265.

    Article  PubMed  CAS  Google Scholar 

  24. Przyklenk K, Hata K, Kloner R. 1997. Is calcium a mediator of infarct size reduction with preconditioning in canine myocardium? Circulation 96:1305–1312.

    Article  PubMed  CAS  Google Scholar 

  25. Inui M, Wang S, Saito A, Fleischer S. 1988. Characterization of junctional and longitudinal sarcoplasmic reticulum from heart muscle. J Biol Chem 263:10843–10850.

    PubMed  CAS  Google Scholar 

  26. Osada M, Netticadan T, Tamura K, Dhalla NS. 1998. Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am J Physiol 274:H2025–H2033.

    PubMed  CAS  Google Scholar 

  27. Donoso P, Aracena P, Hidalgo C. 2000. Sulfhydryl oxidation overrides Mg(2+) inhibition of calcium-induced calcium release in skeletal muscle triads. Biophys J 79:279–286.

    Article  PubMed  CAS  Google Scholar 

  28. Bull R, Marengo JJ, Suarez-Isla BA, Donoso P, Sutko JL, Hidalgo C. 1989. Activation of calcium channels in sarcoplasmic reticulum from frog muscle by nanomolar concentrations of ryanodine. Biophys J 56:749–756.

    Article  PubMed  CAS  Google Scholar 

  29. Zucchi R, Ronca-Testoni S. 1997. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49: 1–51.

    PubMed  CAS  Google Scholar 

  30. Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, Mariani M. 1995. Postischemic changes in cardiac sarcoplasmic reticulum Ca2+ channels: A possible mechanism of ischemic preconditioning. Circ Res 76:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  31. Sun H, Chartier D, Leblanc N, Nattel S. 2001. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocites. Cardiovasc Res 49:751–761.

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Ashraf M. 1999. Role of protein kinase C in mitochondrial KATP channel mediated protection against Ca2+ overload injury in rat myocardium. Circ Res 84:1156–1165.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Domenech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Domenech, R., Macho, P., Sánchez, G., Donoso, P. (2003). Non Ischemic Myocardial Preconditioning by Tachycardia and Exercise. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics