Adenosine A3 Receptor induced Delayed Preconditioning: Essential Role of Nuclear Factor κB, Nitric Oxide Synthase and Mitochondrial KATP channels

Part of the Progress in Experimental Cardiology book series (PREC, volume 6)

Summary

We investigated the signaling mechanism of adenosine A3 receptor (A3AR) induced delayed cardioprotection. Mice pretreated with selective A3AR agonist, N6-(3-iodobenzyl) adenosine-5′-N-methyluronamide (IB-MECA) demonstrated significant reduction in necrosis and improvement in post-ischemic myocardial performance 24hrs later as compared to vehicle-treated controls. Pretreatment with A3AR antagonist, MRS1191 abolished delayed cardioprotection while selective adenosine A1 receptor antagonist, 8-8-cyclopentyl-1,3-dipropyl xanthine (DPCPX) had no effect. Electrophoretic mobility shift assay demonstrated increased nuclear factor-κB (NF-κB) binding in nuclear extracts following A3AR stimulation, which was diminished by MRS1191 and NF-κB inhibitor, pyrro-lidinediethyldithiocarbamate (PDTC). Also, the cardioprotection was abrogated by PDTC as well as targeted ablation of p50 subunit of NF-κB in mice. The inhibition of inducible nitric oxide synthase (iNOS) with S-methylisothiourea and targeted disruption of iNOS gene abolished the protective effect of A3AR stimulation. Expression of iNOS mRNA and NO production were enhanced after 6 and 24hrs of IB-MECA treatment respectively. MRS1191 and PDTC but not DPCPX blocked NO generation after A3AR stimulation. MitoKATP channel blocker, 5-hydroxydecanoate abolished the protective effect of A3AR. These studies suggest that signaling cascade involving NF-κB activation, synthesis of NO from iNOS and subsequent opening of mitoKATP channel play an essential role in A3AR-induced delayed phase of ischemic protection in the heart. We propose that selective activation of A3AR with its pharmacological drugs can potentially be used to enhance the endogenous defense mechanisms that may provide long lasting ischemic protection of the ischemic heart.

Key words

Adenosine nuclear factor κ-B nitric oxide mito-KATP channel ischemia reperfusion myocardial infarction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murry CE, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.PubMedCrossRefGoogle Scholar
  2. 2.
    Marber MS, Latchman DS, Walker JM, Yellon DM. 1993. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272PubMedCrossRefGoogle Scholar
  3. 3.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. 1993. Delayed effect of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299.PubMedCrossRefGoogle Scholar
  4. 4.
    Baxter GF, Gorna FM, Yellon DM. 1997. Characterisation of the infarct-limiting effect of delayed preconditioning: time course and dose-dependency studies in rabbit myocardium. Basic Res Cardiol 92:159–167.PubMedCrossRefGoogle Scholar
  5. 5.
    Baxter GF, Marber MS, Patel VC, Yellon DM. 1994. Adenosine receptor involvement in delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 90:2993–3000.PubMedCrossRefGoogle Scholar
  6. 6.
    Auchampach, JA, Bolli R. 1999. Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges. Am J Physiol 276:1113–1116.Google Scholar
  7. 7.
    Auchampach JA, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R. 1997. Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res 80:800–809.PubMedCrossRefGoogle Scholar
  8. 8.
    Tucker AL, Linden J. 1993. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res 27:62–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Linden J. 2001. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Ann Rev Pharmacol Toxicol 41:775–787.CrossRefGoogle Scholar
  10. 10.
    Feoktistov I, Biaggioni I, 1994. Positive modulation of intracellular Ca2+ levels by adenosine A2b receptors, prostacyclin, and prostaglandin E1 via a cholera toxin-sensitive mechanism in human erythroleukemia cells. Mol Pharmacol 45:1160–1167.PubMedGoogle Scholar
  11. 11.
    Feoktistov I, Biaggioni I. 1995. Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylHne-sensitive mechanism with implications for asthma. J Clin Inv 96: 1979–1986.CrossRefGoogle Scholar
  12. 12.
    Mirabet M, Mallol J, Lluis C, Franco R. 1997. Calcium mobilization in Jurkat cells via A2b adenosine receptors. Br J Pharmacol 122:1075–1082.PubMedCrossRefGoogle Scholar
  13. 13.
    Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC. 1999. Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Physiol 277:H128–H135.PubMedGoogle Scholar
  14. 14.
    Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC. 2000. Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation 102:902–907.PubMedCrossRefGoogle Scholar
  15. 15.
    Liang BT. 1997. Protein kinase C-mediated preconditioning of cardiac myoytes: role of adenosine receptor and KATP channel. Am J Physiol 273:H847–H853.PubMedGoogle Scholar
  16. 16.
    Dana A, Skarli M, Papakrivopoulou J, Yellon DM. 2000. Adenosine A1 receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res 86:921–932.CrossRefGoogle Scholar
  17. 17.
    Zhao TC, Hines DS, Kukreja RC. 2001. Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial KATP channels. Am J Physiol 280:278–285.Google Scholar
  18. 18.
    Liang BT. 1998. Protein kinase C-dependent activation of KATP channel enhances adenosine-induced cardioprotection. Biochem J 336:337–343.PubMedGoogle Scholar
  19. 19.
    Hu K, Li GR, Nattel S. 1999. Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC. Am J Physiol 276:488–495.Google Scholar
  20. 20.
    Baxter GF, Yellon DM, 1999. ATP-sensitive K+ channels mediate the delayed cardioprotective effect of adenosine Al receptor activation. J Mol Cell Cardiol 31:981–989.PubMedCrossRefGoogle Scholar
  21. 21.
    Liang BT, Jacobson KA. 1998. A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci USA 95:6995–6999.PubMedCrossRefGoogle Scholar
  22. 22.
    Dougherty C, Barucha J, Schofield PR, Jacobson KA, Liang BT. 1998. Cardiac myocytes rendered ischemia resistant by expressing the human adenosine A1 or A3 receptor. FASEB J 12:1785–1792.PubMedGoogle Scholar
  23. 23.
    Maldonado C, Qui Y, Tang XL, Cohen MV, Auchampach J, Bolli R. 1997. Role of adenosine receptors in late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol 273:H1324–H1332.PubMedGoogle Scholar
  24. 24.
    Takano H, Bolli R, Black RG, Kodani E, Tang XL, Yang Z, Bhattacharya S, Auchampach JA. 2001. A1 or A3 adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res 88:520–528.PubMedCrossRefGoogle Scholar
  25. 25.
    Downey JM, Liu GS, Thornton JD. 1993. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res 27:3–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Rhee AM, Jacobson KA. 1996. Molecular architecture of G-protein coupled receptors. Drug Dev Res 37:1–18.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou QY, Li C, Olah ME, Johnson KA, Stiles GL, Civelli O. 1992. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 89:7432–7436.PubMedCrossRefGoogle Scholar
  28. 28.
    Hill RJ, Oleynek JJ, Magee W, Knight DR, Tracey WR. 1998. Relative importance of adenosine A1 and A3 receptors in mediating physiological or pharmacological protection from ischemic myocardial injury in the rabbit heart. J Mol Cell Cardiol 30:579–585.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhao TC, Kukreja RC. 2002. Late preconditioning elicited by activation of adenosine A3 receptor in heart: Role of NFkappaB, iNOS and mitochondrial KATP channel. J Mol Cell Cardiol 34: 263–277.PubMedCrossRefGoogle Scholar
  30. 30.
    Guo Y, Bolli R, Bao W, Wu WJ, Black RG, Jr, Murphree SS, Jacobson KA, Auchampach JA. 2001. Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J Mol Cell Cardiol 33:825–830.PubMedCrossRefGoogle Scholar
  31. 31.
    Shneyvays V, Jacobson KA, Li AH, Nawrath H, Zinman T, Isaac A, Shainberg A. 2000. Induction of apoptosis in rat cardiocytes by A3 adenosine receptor activation and its suppression by isoproterenol. Exp Cell Res 257:111–126.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghosh S, Baltimore D. 1990. Activation in vitro of NF-B by phosphorylation of its inhibitor IkB. Nature 344:678–682.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang Z, Costanzo M, Golde DW, Kolesnick RN. 1993. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL-60 cells. J Biol Chem 268:20520–20523.PubMedGoogle Scholar
  34. 34.
    Yang Z, Costanzo M, Golde DW, Kolesnick RN. 1993. Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL-60 cells. J Biol Chem 268:20520–20523.PubMedGoogle Scholar
  35. 35.
    Blackwell TS, Holden EP, Blackwell TR, DeLarco JE, Christman JW. 1994. Cytokine-induced neutrophil chemoattractant mediates neutrophilic alveolitis in rats: association with nuclear factor kappa B activation. Am J Respir Cell Mol Biol 11:464–472.PubMedGoogle Scholar
  36. 36.
    Zuckerman SH, Evans GF. 1992. Endotoxin tolerance: in vivo regulation of tumor necrosis factor and interleukin-1 synthesis is at the transcriptional level. Cell Immunol 140:513–519.PubMedCrossRefGoogle Scholar
  37. 37.
    Maulik N, Sato G, Price BD, Das DK. 1998. An essential role of NFkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 429:365–369.PubMedCrossRefGoogle Scholar
  38. 38.
    Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qui Y, Li JJ, Bolli R. 1999. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84:1095–1109.PubMedCrossRefGoogle Scholar
  39. 39.
    Morishita R, Sugimoto T, Aoki M, Kida I,Tomita N, Moriguchi A, Maeda K, Kaneda Y, Higaki J, Ogihara T. 1997. In vivo transfection of eis element “decoy” against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med 3:894–899.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao TC, Taher MM, Valerie KC, Kukreja RC. 2001. p38 triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-kappaB and iNOS. Circ Res 189:915–922.CrossRefGoogle Scholar
  41. 41.
    Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA. 1992. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intactcells. J Exp Med 175:1181–1194.PubMedCrossRefGoogle Scholar
  42. 42.
    Parsons M, Young L, Lee JE, Jacobson KA, Liang BT 2000. Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J 14:1423–1431.PubMedCrossRefGoogle Scholar
  43. 43.
    Xi L, Kukreja RC. 2000. Pivotal role of nitric oxide in delayed pharmacological preconditioning against myocardial infarction. Toxicology 155:37–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Xi L, Salloum F, Tekin D, Jarrett NC, Kukreja RC. 1999. Glycolipid RC-552 induces delayed preconditioning-like effect via iNOS-dependent pathway in mice. Am J Physiol 277:H2418–H2424.PubMedGoogle Scholar
  45. 45.
    Xi L, Jarrett NC, Hess ML, Kukreja RC. 1999. Essential role of inducible nitric oxide synthase in monophosphoryl lipid A-induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice. Circulation 99:2157–2163.PubMedCrossRefGoogle Scholar
  46. 46.
    Bolli R. 1998. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol 93:325–338.PubMedCrossRefGoogle Scholar
  47. 47.
    Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. 1999. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512.PubMedCrossRefGoogle Scholar
  48. 48.
    Xie QW, Kashiwabara Y, Nathan C. 1994. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705–4708PubMedGoogle Scholar
  49. 49.
    Nakayama DK, Geller DA, Lowenstein CJ, Chern HD, Davies P, Pitt BR, Simmons RL, Billiar TR. 1992. Cytokines and lipopolysaccharide induce nitric oxide synthase in cultured rat pulmonary artery smooth muscle. Am J Respir Cell Mol Biol 7:471–476.PubMedGoogle Scholar
  50. 50.
    Lyons CR, Orloff GJ, Cunningham JM. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267:6370–6374.PubMedGoogle Scholar
  51. 51.
    Szewczyk A. 1996. The ATP-regulated K+ channel in mitochondria: five years after its discovery. Acta Biochim Pol 43:713–719.PubMedGoogle Scholar
  52. 52.
    Bernardo NL, D’Angelo M, Okubo S, Joy A, Kukreja RC. 1999. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 276:H1323–H1330.PubMedGoogle Scholar
  53. 53.
    Hoag JB, QianY-Z, Nayeem MA, D’Angelo M, Kukreja RC. 1997. ATP-sensitive potassium channel mediates delayed ischemic protection by heat stress in rabbit heart. Am J Physiol 42:H861–H868.Google Scholar
  54. 54.
    Janin Y, Qian Y-Z, Hoag JB, Elliott GT, Kukreja RC 1998. Pharmacologic preconditioning with monophosphoryl lipid A is abolished by 5-hydroxydecanoate, a specific inhibitor of the KATP channel. Cardiovasc Pharmacol 32:337–342.CrossRefGoogle Scholar
  55. 55.
    Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC. 1999. Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide. Am J Physiol 277:H2425–H2434.PubMedGoogle Scholar
  56. 56.
    Takashi E, Wang Y, Ashraf M. 1999. Activation of mitochondrial KATP channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ Res 85:1146–1153.PubMedCrossRefGoogle Scholar
  57. 47.
    Sasaki N, Sato T, Ohler A, O’Rourke B, Marban E. 2000. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101:439–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Division of Cardiology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations